

Interpreting economic evaluations of healthcare interventions a simple guide

Luke Paterson Researcher in Health Economics This guide aims to help healthcare professionals of all backgrounds make sense of economic evaluations to determine whether interventions represent value for money

ealthcare resources are limited, but demand for healthcare services is increasing. This makes it necessary to choose between various treatment options (e.g. type of compression therapy).

Economic evaluations are frameworks used to explicitly compare the costs and outcomes of two or more available treatment options (*Figure 1*). The aim is to inform decisions between alternative courses of action to maximise improvements in health status given the resources available.

This information is used by stakeholders (such as the National Institute for

Health and Care Excellence (NICE), commissioners, etc) to inform clinical guidelines and reimbursement decisions. This guide aims to simplify economic evaluations in healthcare for those who are not health economists.

The benefits of economic evaluation in healthcare

Formal economic evaluations provide a systematic and transparent analysis of all the costs and outcomes relevant to a particular decision problem, as opposed to using a rule of thumb or informal decision criteria.

Outcomes of formal evaluations will include an identification of relevant alternative

treatments, clarification about the analysis perspective (i.e. who is the relevant decision-maker, and what information do they require?) and quantifications of both costs and outcomes. Transparency in formal evaluations makes all assumptions explicit and exposes value judgements to challenge.

Table 1. Types of economic and affordability evaluation						
Analysis type	Measurement of costs	Measurement of outcomes	Summary measure			
Full economic evaluations						
CEA	Pounds sterling (£)	Natural unit/clinical outcomes (e.g. average time to heal, life- years gained, blood glucose level reduction)	Cost-effectiveness ratio (e.g. Pounds sterling (£) per life year gained)			
CUA	Pounds sterling (£)	Healthy years or quality- adjusted life years (QALYs) that consider both quality and quantity of life	Cost-utility ratio (e.g. Pounds sterling (£) per QALYs gained)			
СВА	Pounds sterling (£)	Pounds sterling (£) estimated through e.g. human capital and friction cost method approaches	Pounds sterling (£) difference in benefits and costs			
CCA	Pounds sterling (£)	Natural unit/clinical outcomes	Disaggregated costs and outcomes			
Partial econe	omic evaluatio	ns				
СМА	Pounds sterling (£)	None (equivalent efficacy and safety between treatments)	Pounds sterling (£) difference in costs between alternatives			
Outcome description	None (only considers outcomes)	Natural unit/clinical outcomes or healthy years/QALYs or Pounds sterling (£)	Description of health consequences (i.e. burden of disease studies)			
Cost- outcome description	Pounds sterling (£)	Natural unit/clinical outcomes or healthy years/QALYs or Pounds sterling (£)	Description of both outcomes and costs of a single intervention without comparison to alternatives			
Cost description	Pounds sterling (£)	None (only considers costs)	Description of resource costs (i.e. cost of illness studies) without comparison to alternatives			
Cost- comparison analysis	Pounds sterling (£)	None (only considers costs)	Description of the costs of alternative interventions			
Affordability	vevaluation					
Budget impact analysis	Pounds sterling (£)	Pounds sterling (£) (only effects which can be monetised)	Estimate of the cost impact on a decision maker's budget from investing in a new intervention			
CMA=cost-minimisation analysis; CEA=cost-effectiveness analysis; CUA=cost-utility analysis; CBA=cost-benefit analysis, CCA=cost-consequence analysis						

Techniques of economic evaluations

There are different approaches used for economic evaluations (*Table 1*).¹ All types of economic evaluations identify different treatment options. Cost-minimisation analysis (CMA), although not very common, is used to examine the differences in costs when the outcomes of two or more treatments are assumed (based on evidence) to be the same. For example, CMA has been used to examine different negative pressure wound therapies.²

Other types of economic evaluations, including cost-effectiveness analysis (CEA), cost-utility analysis (CUA) and cost-benefit analysis (CBA), quantify the relevant costs and outcomes to maximise improvements in health given the available budget. The differences between CEA, CUA and CBA lie in the way outcomes are measured and valued.

It is difficult to measure health outcomes in monetary units as required for CBA (e.g. how much are you willing to pay to avoid a heart attack?). This is why CEA/ CUA are more commonly used. CEA/CUA calculate the relative cost-effectiveness of alternatives using an incremental costeffectiveness ratio (ICER):

$ICER = \frac{Costs_A - Costs_B}{Outcomes_A - Outcomes_B}$

An ICER is interpreted as the additional (incremental) cost per additional unit of outcome gained. For CEA, this is in terms of natural units e.g. cost per ulcer-free day. For CUA, this is in terms of healthy years e.g. cost per quality-adjusted life years (QALYs) gained. QALYs are a measure of healthy life years that includes both the quality and the quantity of life lived.

Cost-consequence analysis (CCA) is a descriptive exercise of enumerating the costs and outcomes of alternatives without any attempt to directly compare them; comparison is left to the decisionmaker's judgement.

Partial economic evaluations are commonly conducted when there is a lack of available evidence to conduct full evaluations. Examples include:

- Cost description studies that only report the costs of a single treatment or multiple treatments without consideration of outcomes
- 2 Effectiveness/efficacy evaluation studies that only report the effectiveness of a single treatment or multiple treatments without consideration of costs.

Evidence for economic evaluations

In healthcare decision-making, priority is given to high-quality studies found further up the hierarchy of evidence (i.e. systematic reviews) rather than expert opinions or editorials.

Economic evaluations have traditionally been conducted within single clinical studies where most of the necessary costs and outcome data is collected (e.g. clinical trials and routine databases). Such economic analyses are commonly limited to what data is and is not

Table 2. Types of uncertainty in economic evaluations					
Type of uncertainty	Reason for uncertainty	Example of uncertainty	Methods for assessing uncertainty		
Variability	Unexplained differences between people	People may have different recovery times due to unknown genetic factors	Standard deviations associated with mean estimates		
Heterogeneity	Explained differences between people	People may have different recovery times due to age, sex, ethnicity, etc	Subgroup analysis can examine the impact of a treatment on a subset of people (e.g. elderly people)		
Parameter uncertainty	The choice of specific inputs into the evaluation	The unit costs attached to specific healthcare resource use may be out of date	Monte Carlo probabilistic analysis (i.e. varying all parameters based on their distributions) can examine the impact of using different parameter values on the evaluation results. Deterministic sensitivity analysis (i.e. varying one parameter whilst keeping others constant) is an alternative approach.		
Structural uncertainty	The choice of assumptions within the evaluation	The choice of treat- ment comparator(s) may not reflect clinical practice in different parts of the country	Scenario analysis can examine the impact of structural uncer- tainty. Decision models can also be used to assess the impact of structural uncertainty.		

collected (e.g. clinical trials are often not fully representative of clinical practice). Consequently, there has been a growing use of methods that synthesise highquality evidence together, such as decision models.

All economic evaluations contain **uncertainty**,¹⁴ which can be assessed through different methods (*Table 2*).

Assessing the quality of economic evaluations

People reading economic evaluations of healthcare interventions often face difficulties in assessing the quality of the research and the validity of the findings. Resultingly, authors have developed checklists of the key criteria economic evaluations should report to assess with strengths and weaknesses of studies.

The Consolidated Health Economic Evaluation Reporting Standards 2022 (**CHEERS 2022**) checklist contains 28 items with accompanying descriptions³ and separately reported definitions for the interpretation of each item.⁴ The checklist is designed for any type of economic evaluation, and items are subdivided into the following categories: title, abstract, introduction, methods, results, discussion and other relevant information.

It is unlikely that every study will satisfy all the checklist criteria. The aim of the

CHEERS checklist is to act as a screening tool to quickly identify the quality of reporting of the key strengths and weaknesses of an evaluation.

Decision models for economic evaluation

Decision-analytic models⁵ are a vehicle for economic evaluations. They use mathematical frameworks of disease progression to synthesise the best available evidence together (i.e. clinical trials, literature etc.). Models simulate different clinical pathways in which a patient might progress when using alternative treatments. This allows for long-term costs and health outcomes to be calculated and compared for different treatments. The full complexities of decision models are beyond the scope of this guide, but a basic understanding is required to identify some of the CHEERS checklist items.

In accordance with reporting guidance,³ authors should justify why a model is used; describe the model structure and input parameters used; and discuss the

validity of the model to predict healthcare costs and outcomes over a specified time horizon. Here are examples of two common decision model structures for wound care:

- Figure 2 is an example of a decision tree to evaluate the cost-effectiveness of different types of dressings for venous leg ulcers.⁶ Patients progress from left to right along the treatment branches of the tree. Different **transition probabilities** are applied along the tree depending on the treatment options. Health outcomes (healed or unhealed) and the associated costs are determined at the end of the time period.
- 2 Figure 3 is an example of a statetransition model to evaluate the cost-effectiveness of different highcompression bandages and hosieries.⁷ Cohorts of patients transition between health states - unhealed, healed and dead (cannot transition out of the dead state) - as their condition changes over time, given different treatment options that alter the **probability** of transitions. Costs and health

outcomes are derived over each cycle (i.e. a meaningful time period where transitions between health states may occur) and accumulative across all the cycles over the time period. Markov models are preferred for reoccurring events.

Hartmann's health economics studies

Zetuvit[®] Plus Silicone (Paul Hartmann Ltd, UK) is a superabsorbent dressing, which has been reported to be an effective⁸ and cost-effective⁹ treatment to manage exudate and undisturbed wounds.

Hartmann has funded multiple research studies to explore the health economics of wound care, including three **CEAs** in different settings⁹⁻¹¹ and three methodological contributions. Of these, two are reviews of **risk prediction** tools to help prevent and manage the development of hard-toheal (chronic) wounds;^{12,13} and one is a discussion paper on characterising **uncertainty** in the evaluation of hardto-heal wound management.¹⁴

Plus Silicone economic evaluations			
PICOS	Description		
Population	Patients with moderate-to- high exudating leg ulcers		
Intervention	Zetuvit [®] Plus Silicone		
Comparator	Standard of care - UK & Germany: other superabsorbent (36%), antimicrobials (30%), foams (20%), alginates (9%), other dressings (5%); France: foams (100%)		
Outcome	Quality-adjusted life week (QALW)		
Study design	Cost-utility analysis		

Cost-effectiveness of Zetuvit[®] Plus Silicone

The cost-effectiveness of Zetuvit[®] Plus Silicone was evaluated in England,⁹ France,¹⁰ and Germany¹¹ from the perspective of the healthcare provider. A descriptive summary of the economic evaluations is shown in *Table 3*.

The cost-effectiveness studies used patient-level microsimulation models (status of ulcer-defined health states: infected, deteriorating, static and healing). Microsimulation models are a type of state-transition model, similar to Markov models, but simulate individual patients rather than cohorts of patients.

In England and Wales, an ICER below the NICE threshold range of £20,000-£30,000 per QALY gained is considered to be cost-effective¹⁵. The English study reported that Zetuvit[®] Plus Silicone was cost-saving compared with standard of care by £222 per person over a 6-month period and resulted in an additional 0.081 quality-adjusted life weeks (QALWs). This corresponds to an ICER of approximately -£2741 per QALW gained. Zetuvit[®] Plus Silicone would be considered dominant compared to standard of care (i.e. it is likely to represent good value for money to the healthcare system).

A negative ICER is sometimes misleading because it can refer to a cost-saving situation (lower costs and better outcomes) or a not cost-effective situation (higher costs and worse outcomes). Many countries have their own health technology assessment (HTA) bodies with different willingness-to-pay thresholds.

Conclusion

Health economic evaluations are important to assess the cost-effectiveness of new healthcare interventions. There are several techniques and vehicles for economic evaluation. Decision analytical modelling is a common method for conducting economic evaluations. Models are only as

Glossary of key terms				
Term	Definition			
Cost-benefit analysis	Type of economic evaluation that compares the costs and consequences of alternative health interventions where consequences are measured in monetary units			
Cost-consequence analysis	Type of economic evaluation that allows the reader to form their judgement about the importance of disaggregated costs and a range of disaggregated consequences			
Cost-effectiveness analysis	Type of economic evaluation that compares the costs and health outcomes of alternative health interventions where health outcomes are measured in natural units (i.e. life years)			
Cost-minimisation analysis	Type of economic evaluation that compares the costs of alternative health interventions assuming the health outcomes are equivalent			
Cost-utility analysis	Special type of cost-effectiveness analysis that measures health outcomes in healthy years (i.e. QALYs)			
Economic evaluation	Assessing the costs and outcomes of alternative courses of action			
Hierarchy of evidence	Ranking of study types based on their academic rigour and quality of evidence; typically, meta-analysis and systematic reviews are seen as the highest quality and opinion pieces as the lowest quality			
Incremental cost- effectiveness ratio	Summary measure of the economic value of an intervention compared to an alternative			
National Institute for Health and Care Excellence (NICE)	Institute that provides national guidance and advice to improve health and social care in England			
Parameter	A numerical factor that is used to define a particular input (e.g. health utilities, transition probabilities etc.)			
Perspective	The analysis perspective is the point of view in which the decision problem is assessed. This can affect the types of costs and outcomes examined			
Quality-adjusted life years (QALYs)	Measure of the length of life and the quality of life; one QALY is equal to one year in perfect health			
Randomised controlled trials (RCTs)	Experiments used to control factors not under direct experimental control to elicit the effect of an intervention			
State transition model	An approach to decision analytical modelling whereby individuals (microsimulation) or cohorts (Markov) transition through states			
Threshold	The maximum amount a decision-maker is willing to pay for a unit of health outcome, e.g. £X per QALYs			
A more extensive list can be	e found on the York Health Economics Consortium's website ¹⁶			

© 2024 MA Healthcare Ltd

good as their inputs and will always produce uncertain outcomes to some degree. There are methods to communicate uncertainty in terms of the impact on cost-effectiveness. This guide was written to provide an introduction to economic evaluations in healthcare. Economic evaluation checklists such as CHEERS are recommended to assess the quality of studies.

Acknowledgment: Review and feedback provided by Vladica Veličković, Head of Global Evidence Generation at Hartmann

References

- Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care programmes. Oxford: University Press; 2015
- Mallow PJ, Tepsick J, Davis KE, Lavery LA. Costminimization analysis of negative pressure wound therapy technologies for the treatment of moderate-to-severe foot infections. J Comp Eff Res. 2020;9(14):1027-1033. https://doi.org/10.2217/cer-2020-0127
- Husereau D, Drummond M, Augustovski F et al. Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022) statement: updated reporting guidance for health economic evaluations. BMJ. 2022:e067975. https://doi.org/10.1136/bmj-2021-067975
- Husereau D, Drummond M, Augustovski F et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) 2022 explanation and elaboration: a report of the ISPOR CHEERS II Good Practices Task Force. Value Health. 2022;25(1):10–31. https://doi.org/10.1016/j.jval.2021.10.008
- Siebert, U. When should decision-analytic modeling be used in the economic evaluation of health care?. HEPAC 4, 143–150 (2003). https://doi.org/10.1007/ s10198-003-0205-2
- Guest JF, Ruiz FJ, Mihai A, Lehman A. Cost effectiveness of using carboxymethylcellulose dressing compared with gauze in the management of exuding venous leg ulcers in Germany and the USA. Cur Med Res Op. 2005;21(1):81–92. https:// doi.org/10.1185/030079904x15219

- Ashby RL, Gabe R, Ali S et al. VenUS IV (Venous leg Ulcer Study IV) - compression hosiery compared with compression bandaging in the treatment of venous leg ulcers: a randomised controlled trial, mixedtreatment comparison and decision-analytic model. Health Technol Assess. 2014;18(57). https://doi. org/10.3310/hta18570
- Atkin L, Barrett S, Chadwick P et al. Evaluation of a superabsorbent wound dressing, patient and clinician perspective: a case series. J Wound Care. 2020;29(3):174–182. https://doi.org/10.12968/ jowc.2020.29.3.174
- Veličković VM, Chadwick P, Rippon MG et al. Cost-effectiveness of superabsorbent wound dressing versus standard of care in patients with moderate-to-highly exuding leg ulcers. J Wound Care. 2020;29(4):235–246. https://doi.org/10.12968/ jowc.2020.29.4.235
- Veličković VM, Prieto PA, Krga M, Jorge AM. Superabsorbent wound dressings versus foams dressings for the management of moderate-tohighly exuding venous leg ulcers in French settings: An early stage model-based economic evaluation. J Tissue Viability. 2022;31(3):523–530. https://doi. org/10.1016/j.jtv.2022.04.005
- Veličković VM, Szilcz M, Milošević Z, Godfrey T, Siebert U. Cost-effectiveness analysis of superabsorbent wound dressings in patients with moderate-to-highly exuding leg ulcers in Germany. Int Wound J. 2022;19(2):447–459. https://doi. org/10.1111/iwj.13645
- Veličković VM, Špelman T, Clark M et al. Individualized risk prediction for improved chronic wound management. Adv Wound Care. 2023;12(7):387–398. https://doi.org/10.1089/wound.2022.0017
- Veličković VM, Macmillan T, Kottner J et al. Prognostic models for clinical outcomes in patients with venous leg ulcers: A systematic review. J Vasc Surg Venous Lymphat Disord. 2024;12(1):101673. https://doi. org/10.1016/j.jvsv.2023.06.017
- Veličković V, Janković D. Challenges around quantifying uncertainty in a holistic approach to hard-to-heal wound management: Health economic perspective. Int Wound J. 2023;20(3):792-798. https://doi.org/10.1111/iwj.13924
- National Institute for Health and Care Excellence. NICE health technology evaluations: the manual. 2022
- York Health Economics Consortium. A glossary of health economic terms york. 2016. https://yhec. co.uk/resources/glossary/ (accessed November 2023)

© Published by MA Healthcare Ltd 2024

MA Healthcare

Editor: Benjamin Wakefield | Project Manager: Mercedes Arrieta | Head of projects: Chris Beck Design: VeeSun Ho | Associate publisher: Tracy Cowan | Managing Director: Anthony Kerr Supported by Hartmann www.hartmann.info

Effectiveness redefined.

Designed to be **YOUR** first choice.

Zetuvit[®] Plus Silicone Border

- Simple to choose, simple to use
- Versatile, effective, patient-friendly

Find out, why to step-up to Zetuvit Plus Silicone Border. www.hartmann.info

