

Cellular, acellular, and matrix-like products (CAMPs)

for soft-tissue reconstruction in acute surgical and traumatic wounds

SUPPORTED BY

Consensus panel

Co-Chairs

Daniel L Kapp, Chief of Plastic Surgery, Palm Beach Gardens Medical Center, West Palm Beach, FL, US

Thomas Serena, CEO and Medical Director, Serena Group, US

Author panel

Abigail E Chaffin, Professor of Surgery and Chief, Division of Plastic and Reconstructive Surgery, Tulane University, New Orleans, Louisiana, US

Michael Desvigne, Plastic and Reconstructive Surgeon, Valley Wound Care Specialists, Arizona, US,

John Kirby, Acute and Critical Care Surgeon, Washington University School of Medicine, St Louis, MO, US

Mark D Suski, Plastic Surgeon, Los Robles Hospital and Medical Center, Thousand Oaks, CA, US

William H Tettelbach, Chief Medical Officer, Restorix Health, Park City, UT; Adjunct Assistant Professor, Duke University School of Medicine, Durham, NC, US

Reviewer panel

Claire Dillingham , Chief of Plastic Surgery, Cone Health Medical Group Cone Health West Virginia School of Osteopathic Medicine Greensboro, NC, US

Amy L Couch, Wound Care Physician, Mercy Hospital, St Louis, MO, US

Thomas A Davenport, Plastic Surgeon, New York Plastic Surgical Group, New York, NY, US

Marc Matthews, Arizona Burn Center, Valleywise Health Medical Center, US

Vineet Mehan, Plastic Surgeon, Dominion Plastic Surgery, Falls Church, VA, US

Joseph Molnar, Professor of Plastic and Reconstructive Surgery and Regenerative Medicine, Wake Forest University School of Medicine, NC, US

Contents

- S3 Introduction
- S4 Recent reported uses of CAMPs by specialism or diagnosis
- **S14** Fitting CAMPs in the care plan
- **S17** Overcoming barriers to implementation of CAMPs
- **S19** Conclusions
- **S20** References

MA Healthcare

Editor: Benjamin Wakefield Project manager: Grace Elliott Medical writer: Rose Hamm Associate publisher: Tracy Cowan Head of projects: Camila Fronzo Publisher: Andrew Iafrati Designer: Veesun Ho

Produced by Mark Allen Medical Communications www.mamedcomms.com

To sponsor or if you have an idea for the next JWC international consensus document, contact Andrew lafrati on +44 (0)7979 520828 andrew.iafrati@markallengroup.com

Published by MA Healthcare Ltd

St Jude's Church, Dulwich Road, London, SE24 0PB, UK +44 (0)20 7738 6726 www.markallengroup.com

© MA Healthcare Ltd 2025

All rights reserved. No reproduction, transmission or copying of this publication is allowed without written permission. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, electronic, photocopying, recording or otherwise, without prior written permission of MA Healthcare or in accordance with the relevant copyright legislation.

Supported by Aroa, Imbed Biosciences, Organogenesis, Reprise Biomedical and Smith+Nephew

Declarations of interest

The authors have no conflicts of interest to declare.

Introduction

Cellular, acellular and matrix-like products (CAMPs) are intended to promote the repair and regeneration of injured tissue by supporting changes in wound-healing physiology through intercellular and intracellular communication and matrix production. The use of placental-based products for wound healing was pioneered in the early 1900s^{1,2} and has been part of plastic surgery for over a century. Since the 1990s, these products have been used in the repair of a myriad of tissue defect types, including both acute and hard-to-heal wounds, as well as surgical wounds across multiple specialities and procedures. ^{3,4} More recently, several other human and animal tissue-derived or engineered materials have been employed to support improved wound healing in the acute setting.

The term 'CAMPs' was introduced in a Journal of Wound Care (JWC) International Consensus Document on best practice for wound repair and regeneration, based on an expert panel meeting held in July 2022.5 The panel reached a consensus that it should replace outdated terms, such as skin substitutes, skin equivalents and cellular/tissue products, as they did not adequately capture the full extent of currently available products, nor the mechanisms by which these products facilitate wound healing. The consensus document defined CAMPs as 'a broad category of biomaterials, synthetic materials or biosynthetic matrices that support repair or regeneration of injured tissues through various mechanisms of action'.6 The document also provided guidelines on best practice for using CAMPs, intended for all members of multidisciplinary wound-care teams, including all advanced practice practitioners (physicians of all specialties, nurse practitioners, physician assistants, physical therapists and occupational therapists).

Since the publication of the consensus document,⁵ the term 'CAMPs' has become widely accepted in wound care, and it is being used with increasing consistency in peer-reviewed publications, academic presentations and other clinical discussions on wound care. However, as of December 2024, the US Centers for Medicare and Medicaid Services (CMS) have not yet adopted the term for coding purposes, despite recognising it in the latest future effective local coverage determination (LCD) document, which addresses the use of CAMPs in diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs).⁷

Consensus statement: The term 'CAMPs' should be used across all disciplines and specialties to ensure greater consistency in development and implementation of best practice, as well as more homogeneity in research.

The US Food and Drug Administration (FDA) offers three pathways for commercial marketing of CAMPs (*Table 1*).⁸

This IWC Position Document is based on the conclusions of a panel meeting convened on 16 October 2024 in Las Vegas, Nevada, US. It is intended to complement the earlier International Consensus Document on CAMPs, with a specific focus on soft-tissue reconstruction in acute surgical and traumatic wounds. The panel explored emerging knowledge and current clinical practice needs through a literature review of recently reported uses of CAMPs in specialism and diagnoses relevant to soft-tissue reconstruction in acute surgical and traumatic wounds. Discussion of the reviewed literature, combined with expert opinion, resulted in a consensus on best-practice recommendations for integrating CAMPs into surgical patients' care plans. These recommendations aim to provide guidance on overcoming implementation barriers, improving clinical practice, and enhancing patient outcomes. Where possible, these recommendations have been referenced to supporting literature, while those based on the panel's expert opinion are presented as consensus statements.

Table 1. Avenues of Food and Drug Administration approval for marketing

Route and eligibility	Process	Examples
Pre-market approval New devices with high safety risks	Independent demonstration that the device: is life-supporting or -sustaining; is substantially important in preventing impairment of human health; or presents no unreasonable risk of illness or injury (the most rigorous route).	 Apligraf (Organogenesis, Canton, MA, US) Dermagraft (Organogenesis, Canton, MA, US) Integra Dermal Regeneration Template (Integra LifeSciences, Princeton, NJ, US) Omnigraft Dermal Regeneration Matrix (Integra LifeSciences, Princeton, NJ, US)
510(k) clearance New devices with low-to-moderate safety risks	Comprehensive safety and efficacy review of scientific, pre-clinical and clinical data to determine the device is substantially equivalent to a legally marketed device (FDC Act section 513i1A).	 Miro3D Wound Matrix (Reprise Biomedical, Plymouth, MN, US) Myriad Matrix (Aroa Biosurgery, Auckland, NZ) Oasis (Smith+Nephew, Watford, UK) PuraPly AM (Organogenesis, Canton, MA, US)
Public Health Services Act section 361 Human cells, tissues or cellular or tissue- based products	Auditable registration of compliance with CFR 1271 regulations and CFR 1271.10(a) criteria to ensure safety for human use without requiring pre-market approval or 510(k) clearance.	 Affinity (Organogenesis, Canton, MA, US) Grafix (Smith+Nephew, Watford, UK) EpiFix (Mimedx, Marietta, GA, US)

Recent reported uses of CAMPs by specialism or diagnosis

In recent years, numerous publications have reported positive results from the use of CAMPs for soft-tissue reconstruction in acute surgical and traumatic wounds across a wide range of specific diagnoses. To explore this trend, a literature search was conducted for papers published that included at least one search term for a relevant diagnosis or specialty and at least one search term for CAMPs, either as a general umbrella category (e.g., skin equivalents, cellular/tissue products, biologic dressings) or specific CAMP categories (e.g., amniotic membrane). The primary databases searched were PubMed, Google Scholar and ScienceDirect. The search was generally limited to papers published in the past 5 years, although some older papers have been included where particularly relevant to the discussion.

The following discussion presents an exemplary but not exhaustive selection of these cases, organised by specialism or

diagnosis, to encourage reflection on scenarios where patient outcomes may be improved with the use of CAMPs to support closure of soft-tissue defects. These publications show surgeons and wound specialists across multiple disciplines using CAMPs in creative, innovative ways to obtain optimal results for wound closure. Together, these studies demonstrate that wound care is not confined to just one specialty, and they show how success, particularly in managing complex acute wounds that may transition to hard-to-heal wounds, requires active collaboration from all participants in a patient's medical care.

Consensus statement: While the majority of these publications are case studies, future research on CAMPs would benefit from more randomised controlled trials (RCTs), although appropriate RCTs for surgery can be difficult to structure.

Case study 1. Abdominal stab wound reconstructed with cryopreserved placental membrane

Courtesy of Zachary Bauman

A 29-year-old man presented with a 34x4.5x2 cm open abdominal stab wound. He was obese, had diabetes mellitus and smoked. He underwent emergency exploratory laparotomy-splenectomy, hepatorrhaphy and diaphragm injury repair, after which the skin was left open, with negative pressure wound therapy (NPWT). After 4 days, there was minimal wound healing, but the patient was ready for discharge from hospital. Four pieces of cryopreserved placental membrane were applied at the bedside, along with NPWT. After 2 days, there was significant granulation tissue development in the wound bed. NPWT was removed, the wound underwent delayed primary closure and the patient was discharged the same day. The patient's wound continued to improve in the outpatient setting.

Case study 2. Abdominal surgical dehiscence reconstructed with three-dimensional hepatic porcine acellular matrix

Courtesy of Moses K Shieh

A woman presented with a dehisced abdominal surgical wound 10 weeks after undergoing panniculectomy surgery. The wound measured 8x2x0.5 cm and included 2 cm of medial tunnelling. A three-dimensional porcine hepatic acellular matrix was applied at the initial presentation and again at day 3. The wound showed consistent reduction in size over time and was completely healed by day 127.

Presentation

Day 77

Day 10

Day 127

Case study 3. Abdominal trauma reconstructed with cryopreserved umbilical tissue Courtesy of Zachary Bauman

A 56-year-old man presented with an open abdominal surgical wound. The wound was created following complex surgery 2 weeks previously for abdominal trauma after a truck he was working on fell and rolled over his pelvis. He had experienced cardiac arrest (return of spontaneous circulation after 5 minutes), bladder rupture with avulsion of urethra (bladder repair and catheter placement), complete avulsion of rectum (stapled off sigmoid colon), open book pelvic fracture (stabilised with traction pin) and several perineal lacerations that were irrigated. After 2 days, he underwent end colostomy, abdominal wall closure and application of negative pressure wound therapy (NPWT). After 2 postoperative weeks without good granulation tissue development, cryopreserved umbilical tissue (CUT) was applied. At week 2 post-CUT, the wound had progressed with significant granulation. At week 3, a skin flap was created, and the wound was 85% closed. Complete closure was achieved at week 7.

Presentation

Week 2

Week 3

Week 7

Abdominal wounds and chest-wall reconstruction

CAMPs have been used as part of multi-stage treatment of complex open abdominal wounds (Case studies 1-3), including those involving enterocutaneous fistulas,9 ostomy reconstruction, 10 abdominal defects with extruding bowel 11 and trauma with abdominal injuries. 12,13

A 2024 retrospective review by Sweitser et al reported that reinforced biologic meshes are more commonly used if there has been a previous repair, and extra reinforcement of already traumatised abdominal-wall tissue is needed. The CAMPs are used to promote granulation over the exposed structures, sometimes in conjunction with negative pressure wound therapy (NPWT), with final closure achieved with a splitthickness skin graft (STSG) or closure by primary intention.¹⁴

The use of matrix-like products in conjunction with surgical procedures for chest-wall reconstruction has been reported for both adults^{15–18} and paediatric patients¹⁹ with lower infection rates, good chest-wall stability and no paradoxical movements. Cadaveric allografts for sternochondral replacement in anterior chest-wall reconstruction has been shown to be safe with long-term optimal chest-wall stability and no complications. 20,21,13

Burns

CAMPs can serve as temporary coverage for burns (Case studies 4-6), as well as to facilitate re-epithelialisation for permanent coverage. 22,23 When used on a clean debrided burn site, they can improve wound coverage; restore functional and aesthetic skin qualities; help prevent wound infection; maintain a moist wound environment; and prevent fluid loss.23

Case study 4. Full-thickness burn reconstructed with a synthetic polymeric matrix²²

Courtesy of Sarah W Manning

A 43-year-old woman presented with a 24.1 cm² full-thickness burn, which had not healed for 5 weeks despite treatment with silver sulfadiazine, an iodine absorbent pad and a silver-foam dressing. A synthetic polymeric matrix was applied weekly, covered with a gauze dressing. The wound area decreased steadily over the following weeks, reducing by 38% to 15 cm² by week 3 and fully healing by week 12.

Presentation

Week 12

A 2024 comprehensive review by Kenny et al of dressings used for temporary and permanent coverage of burns included a detailed discussion of the allografts,24 xenografts25,26 and other CAMPs used in burn therapy, while acknowledging that autografts remain the core of burn reconstruction. It was noted that the CAMPs used for restoration of dermal and epidermal structures did not have the ability to restore adnexal structures.27

Two 2022 cases by Al Mousa et al described facial thermal burn injuries reconstructed with ovine forestomach matrix (OFM), leading to full recovery and satisfactory cosmetic outcomes.²⁸

Case study 5. Paediatric scald burn reconstructed with a synthetic polymeric matrix and dehydrated human amnion/ chorion membrane

Courtesy of Paul Glat

An 18-month-old girl presented with first- and second-degree scalds on her left face, ear, neck and shoulder, covering 8% of her body surface. She was immediately treated with a topical antibiotic. On day 2, the shoulder burn was treated with collagenase; the facial and ear burns were covered with synthetic polymeric matrix; and all wounds were covered with a non-adherent dressing. On post-burn day 5, the facial and ear wounds had healed 98%. The neck and shoulder burns were surgically debrided and covered with dehydrated human amnion/chorion membrane. On post-burn day 10, polymetric matrix had been absorbed and the face and ear were fully healed. On post-burn day 22, all burns were fully healed, with near-normal pigmentation.

Day 5

Day 22

Case study 6. Second-degree burn reconstructed with a synthetic polymeric matrix

Courtesy of Michael Schurr

A 20-year-old man presented with a noncircumferential second-degree burn on the posterior and anterior lower left leg, caused by a vape pen exploding in his pocket 30 minutes prior to admission. The wound, which was was painful and sloughing, covered 4% of his body surface area. The patient received analgesia, and the wound was irrigated, treated with silver sulfadiazine and non-occlusive sterile dressings. On day 2, the wound was debrided and covered with a synthetic polymeric matrix, followed by gauze and a wrap. After 7 days, the wound was dry and painless and had fully re-epithelialised.

Day 0

Day 2

Day 7


Day 7

Trials have compared a fish-skin xenograft with standard of care for treatment of partial-thickness burns.²⁹ In a 2020 phase-two RCT by Lima Júnior et al, the xenograft was associated with significantly fewer days to complete re-epithelialisation and need for significantly fewer dressing changes, as well as lower pain intensity and fewer pain medications required.³⁰

Case study 7. Post-Mohs leg defect reconstructed with a polyhexanide-coated native collagen extracellular matrix and hypothermically stored amniotic membrane Courtesy of Daniel Kapp

A 95-year-old woman presented with a 10.5 cm² surgical wound on her right leg after Mohs surgery to remove a squamous cell carcinoma 1 week earlier. She had a history of venous insufficiency. To control bioburden and support healing, the wound was managed with six applications of a native extracellular matrix (ECM) coated with antimicrobial polyhexanide, followed by one application of a hypothermically stored amniotic membrane (HSAM) as a protective barrier. Complete closure was achieved at 8 weeks.

First ECM plus polyhexanide application

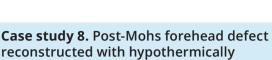
Sixth ECM plus polyhexanide application

HSAM application

Week 8, full closure

In a 2017 review of techniques for burn reconstruction, Glat and Davenport described how CAMPs, specifically amniotic membrane allografts, can be used as an effective treatment for burn injuries being healed by secondary intention, primary closure or with skin grafts, tissue expansion or flaps. Outcomes included more durable grafts, faster healing and, in some cases, avoidance of more invasive procedures. 31

Craniotomy and craniectomy


The use of dehydrated human amnion chorion membrane (dHACM) allografts with closure of craniotomies and craniectomies has been reported for augmentation of dural repair. Several articles by Eichberg et al have described the use of dHACM allografts in transsphenoidal endoscopic endonasal surgery to augment epithelialisation, facilitate wound healing, impede bacterial growth and prevent cerebrospinal fluid leaks. $^{32,33}\,\mathrm{In}$ a 2023 study of seven patients by Endicott et al, dHACM allografts were placed intraoperatively during emergent craniectomies in order to reduce dural adhesion formation and subsequent cranioplasty complications. Negligible adhesions and no complications were found when follow-up closure with an autologous skull cap or implant was performed.34

Excision of skin cancers

Numerous articles have reported success using CAMPs for closure of post-excisional wounds due to skin cancers (Case studies 7-9).35-37

Courtesy of Daniel Kapp and Laura Pfendler A 92-year-old woman presented with a 2.52 cm² post-Mohs left forehead wound defect following removal of a basal-cell carcinoma 8 days previous. She had a history of hypertension, heart murmur and skin cancer. The wound was managed with hypothermically stored amniotic membrane (HSAM) as a protective barrier, in conjunction with partial closure. After 4 weeks of treatment and four applications of HSAM, the wound had reduced in area by 78.6%. Full closure was achieved within 2 months.

stored amniotic membrane³⁹

Day 8

Day 44 Month 3

Case study 10. Hard-to-heal surgical elbow wound reconstructed with boratebased bioactive glass fibre 126

Courtesy of Donald W Buck

A 69-year-old man underwent two operative incision, drainage and debridement procedures for an infected olecranon bursa with osteomyelitis and exposed bone. Over the following months, the resulting wound did not heal as expected. From day 212, the wound was treated with borate-based bioactive glass fibre (BBGF) in seven applications. Within 56 days after starting BBGF, the wound had fully closed.

Presentation

Closure

A 2017 single-centre series of 13 cases by Campagnari et al described a two-stage approach to treating skin malignancies

Case study 9. Post-Mohs nasal defect reconstructed with hypothermically stored amniotic membrane³⁹

Courtesy of Daniel Kapp and Laura Pfendler A 93-year-old male patient presented with a 1 cm² post-Mohs left nasal wound defect after excision of a basal-cell carcinoma 6 days before. He had a history of cardiac disease, hypertension, four coronary artery bypass grafts and COVID-19 pneumonia. The wound was managed with hypothermically stored amniotic membrane as a protective barrier in four applications. Full closure was achieved after 29 days.

Day 6

Day 20

Day 28

Month 3

with CAMPs to avoid more invasive procedures. Stage one was removal of the tumour and application of the CAMP with NPWT, and stage two was a STSG for closure. The results were positive, with good functional and aesthetic outcomes.³⁸

In a 2024 case series by Kapp and Pfendler, seven patients with post-Mohs excisional wounds were managed with hypothermically stored amniotic membrane (HSAM) plus standard wound care. Four patients had been treated for an average of 86.5+/-32.4 days prior to the first application. The patients received an average of 4.6+/-2.5 applications. All wounds achieved full closure, with an average time to closure of 43.7+/-27.1 days. The publication recommended HSAM as an alternative treatment for post-Mohs excisional wounds and concluded that the results suggest that HSAM may be of most benefit when applied early after surgery.³⁹

In a 2013 series of five cases by Simcock and May, ovine forestomach matrix (OFM) was placed under a STSG to cover a scalp incision after tumour removal. The CAMP was applied directly to exposed skull with intact periosteum after surgery. There was 95% graft take and 100% re-epithelialisation after 2 weeks, with only one graft procedure required. 40

Exposed bone

Several studies have shown CAMPs to be effective over exposed bone (Case studies 10 and 11).41,42 For example, a series of six cases by Bohn and Chaffin reported on the use of OFM over exposed vital structures in soft-tissue defects. Granulation was observed within 1-2 weeks, and complete granulation occurred within 1-6 weeks. In the four cases that required a skin graft, granulation tissue was suitable for skin grafting, with 100% take after 1 week and complete re-epithelialisation in 2-3 weeks.43

A 2021 case series by Thornburg et al reported on burn or necrotising fasciitis wounds with exposed tendon and bone treated with a combination of dHACM and decellularised human collagen matrix, anchored with NPWT. Closure was observed after two-to-five applications of CAMPs, leading the

authors to conclude that CAMPs may be an alternative to more-invasive techniques for limb salvage, such as amputation, tissue flap or tissue rearrangement. 44

A 2022 case study by Ohara et al reported on the use of amniotic membrane allografts on a burn patient with exposed

Case study 11. Hard-to-heal surgical wound with exposed tibial bone reconstructed with a three-layer ovine forestomach matrix⁴³

Courtesy of Abigail Chaffin

A male patient presented with a pretibial wound on the anterior lower leg following skin cancer resection. The wound had failed to heal for many months, and there was exposed tibial bone. The wound underwent surgical debridement and burring of the tibial bone with a drill, followed by application of a three-layer ovine forestomach matrix 10×10 cm and negative pressure wound therapy (NPWT). Over the following weeks, the wound fully granulated over the bone. On day 36, the wound was surgically debrided, and a split-thickness skin graft (STSG) was applied. Within 3 weeks, there was full graft take. At day 104, the wound had fully closed, with good soft-tissue coverage over the bone.

Case study 12. Hidradenitis suppurativa reconstructed with ovine forestomach matrix and flap advancement⁵⁹ Courtesy of Abigail E Chaffin

A 31-year-old woman presented with hidradenitis suppurativa (present for 5 years) affecting the axilla, with multiple purulent sinus tracts over the inferior half, tunneling laterally to another sinus. The affected area underwent full-thickness excision, leaving a 15×15 cm wound, after which three-layer ovine forestomach matrix was placed on the wound bed to address inflammation of the deep dermal tissues. The wound was closed with advanced local flaps and retention skin sutures, with iodine gauze packing between. The aim was to let the wound drain between the sutures while accomplishing a mostly primary closure. After 3 weeks, the sutures were removed, with no sign of postoperative infection or dehiscence. The wound fully healed in 11 weeks, and at 12 months there were no complications or recurrences.

Excision

Case study 13. Excised ear keloid reconstructed with cryopreserved placental membrane

Week 11

Courtesy of Brian Kiesnowski

A 35-year-old woman presented with a 3 cm recurrent keloid on the ear. Previous keloids had been excised, followed by full-thickness skin graft and focal radiation treatment, but had continued to recur. Excision of the latest keloid was followed by placement of cryopreserved placental membrane. At 1 year follow-up, there had been no recurrence.

Week 3

2025 MA Healthcare Ltd

S8

Presentation

tendon, muscle and bone. Treatment consisted of tangential excisional debridement, weekly dressing changes with application of different amniotic membrane allografts, petrolatum gauze with a cellulose gel and NPWT. After 48 days, the patient was discharged with 90% viable STSGs, without the need for myocutaneous flap coverage or an amputation. 45

A 2017 literature review by Simman and Hermans examined wounds with exposed tendon and bone treated with esterified hyaluronic acid matrix and concluded that CAMPs can assist in the complete closure of hard-to-heal wounds with exposed structures. ⁴⁶

A 2020 case study by Buck demonstrated the benefits of using a borate-based bioactive glass fibre over a surgical wound with exposed bone.

Case study 14. Painful digital neuroma reconstructed with cryopreserved umbilical tissue

Courtesy of Francis Collini

A 45-year-old man presented with an extremely painful ulnar digital nerve neuroma, secondary to a major crush injury to the distal phalanx of the left index finger from a woodchipper, which was treated with complete amputation and flap reconstruction. A trigger point was interfering with work and other daily activities. A fasciocutaneous flap was mobilised, and the ulnar digital nerve neuroma excised. The residual digital nerve was wrapped in cryopreserved umbilical tissue and closed. By week 2, the incision was closed; by week 4, the finger had range-of-motion; and by week 6, the patient was back to work.

Original injury

Presentation

Procedure

Hernia repair

Recent studies on the use of CAMPs for hernia repair have focused on comparison of biologic versus synthetic meshes for ventral hernias. A7-53 Studies by Morrison and Dhanani 1 reported no significant differences in using the two types of mesh. Three studies reported fewer complications with the synthetic mesh, A4-56 and a 2021 RCT by Miserez et al was terminated because the recurrence rate with one biologic mesh had significantly more complications, specifically recurrence. RCTs by Harris et al A7 and Olivarria et al. Three studies recommended synthetic over biologic mesh due to the significantly higher costs associated with the biologic, as well as more complications. A950.53

In a 2021 12-month prospective, single-arm, multi-centre study by De Noto et al, ventral hernias treated with a permanent reinforced tissue matrix had a low rate of hernia recurrence and surgical site occurrences requiring intervention at 12 months, illustrating their potential to improve outcomes in hernia repair. 58

Consensus statement: Biologic meshes and grafts used for reinforcement of soft tissue in hernia repair are significantly different to synthetic meshes and should be counted under the CAMPs umbrella, even if they have a distinct US regulatory pathway.

Hidradenitis suppurativa

A 2020 case series by Chaffin and Buckley reported on the application of OFM as part of the surgical reconstruction for Hurley Stage III hidradenitis suppurativa (HS) in six patients (*Case study 12*).⁵⁹ The OFM ECM graft was either used as a dermal substitute for staged reconstruction, or as an implant under a fasciocutaneous flap after wide excision of the diseased tissue. Complete closure was achieved in all cases, with granulation supporting a STSG or complete healing of the flap. After 3–12 months of follow-up, all participants had excellent range of motion of the extremity and no reported disease recurrence.

Case study 15. Pilodinal sinus abscess reconstructed with three-dimensional hepatic porcine acellular matrix

Courtesy of Rodney Miller

A man presented with a 4x3x2.5 cm surgical wound resulting from the excision of a recurrent pilonidal cyst performed 5 days earlier. A three-dimensional hepatic porcine acellular matrix was placed in the wound and secured with full-thickness sutures. Negative pressure wound therapy (NPWT) (125 mmHg) with a white foam dressing was used for 6 days following matrix placement. By day 6, the matrix had been successfully incorporated into the wound, with visible ingrowth of granulation tissue. The wound fully healed without deformity in 29 days.

Post-excision

Day 1

Day 8

Day 22

Day 29

Case study 16. Fasciotomy wounds in arterial disease reconstructed with fresh amniotic membrane

Courtesy of Charlie Cheng

A 60-year-old man presented with a 9×9×0.5 cm arterial wound in the left foot, as well as 20×12×3 cm lateral and 9×4×2 cm medial surgical wounds in the lower left leg following emergency fasciotomy due to reperfusion compartment syndrome 16 days previous. The patient was a smoker and had hypertension, a 1-year history of arterial ulceration and thrombosed stenting. He was at risk for amputation. The three wounds were surgically debrided, washed out and covered with fresh amniotic membrane. After positive results in the first week, fresh amniotic membrane was applied at days 8 and 22. At day 22, there were size reductions in the lateral (19×6×1 cm) and medial (7×2×0.25 cm) wounds.

Presentation

Application

Day 8

Day 22

Case study 17. Painful and swollen peroneal tendon reconstructed with cryopreserved placental membrane Courtesy of Smith+Nephew

A 43-year-old woman presented with right ankle pain and swelling secondary to peroneus brevis tendonitis and tenosynovitis with a partial longitudinal tear. Conservative care, comprising rest, immobilisation and joint support with ankle foot orthosis, had failed. The right ankle peroneus brevis tendon was wrapped with cryopreserved placental membrane after surgical debridement and repair, followed by closure of the tendon sheath.

Procedure

Procedure

Procedure

In a 2020 discussion of surgical and post-surgical management of HS, Manfredini reported that application of CAMPs prior to a STSG in a two-step procedure may preserve the deep fat tissue, with superior cosmetic results.⁶⁰

Case study 18. Plantar surgical wound reconstructed with a three-dimensional hepatic porcine acellular collagen matrix⁷⁵ Courtesy of Raymond Abdo and Amy Couch

A 47-year-old man underwent drainage and excision of a cellulitic abscess, resulting in a surgical wound extending 17 cm along his left foot. The wound underwent debridement and application of a three-dimensional hepatic porcine acellular collagen matrix (3D-ACM) in three pieces. The wound demonstrated steady progress towards healing and was fully closed by day 68.

Day 0, presentation

3D-ACM application

Day 25

Day 68, fully closed

Keloid resection

A case study by Gupta et al reported the successful use of viable cryopreserved placental membrane as an adjunct to facial keloid resection (Case study 13).61

Nerve regeneration

CAMPs can be used to create a conduit for nerve regeneration (Case study 14). Animal studies have been promising, with results measured by pin-prick response and sciatic functional index tests. 62-68 A 2015 propensity-matched analysis by Patel et al reported that the use of dHACM as a neurovascular bundle wrap after prostatectomy resulted in enhanced return to continence and potency as compared with a non-graft group.⁶⁹

In a 2017 case series, Rbia et al presented the outcomes of digital nerve gap reconstruction with a collagen nerve conduit and processed nerve allografts, both of which were effective in

Case study 19. Surgical wound on the ankle reconstructed with three-dimensional hepatic porcine acellular collagen matrix⁷⁵

Courtesy of Raymond Abdo and Amy Couch A 60-year-old man underwent incision and drainage of a cellulitic ulceration of the right ankle. After 8 days, the resulting wound exhibited exposed tendon and tunnelling. The wound was treated with a threedimensional hepatic porcine acellular collagen matrix (3D-ACM). By day 31 after application, the 3D-ACM had fully integrated into the wound bed. Complete wound closure was achieved by day 138 after application.

Day 8 after surgery, with exposed tendon

Day 8 after surgery. 3D-ACM application

Day 31 after 3D-ACM application

Day 138 after 3D-ACM application, fully closed

Case study 20. Pseudomeningocele excision reconstructed with cryopreserved umbilical tissue and flap Courtesy of Smith+Nephew

A 57-year-old woman presented with a surgical wound following lumbar laminectomy for removal of pedicle screws and bilateral rods, with excision of pseudomeningocele. She had diabetes, arthritis, gout, hypertension, pulmonary embolism, atrial fibrillation and a history of smoking. Cryopreserved umbilical tissue (CUT) was placed before closure with a bilateral trapezius muscle flap. Negative pressure wound therapy (NPWT) was applied after closure. Full closure was achieved in 1 month.

Pre-op

CUT

Month 1

Case study 21. Necrotising fasciitis reconstructed with a flap, grafting and small intestinal submucosa extracellular matrix Courtesy of Smith+Nephew

A 52-year-old man with new-onset type 2 diabetes (blood sugar >600) and significant two-vessel disease, presented 4-days prior to admission with necrotising fasciitis. Over 3 weeks, the wound underwent surgical debridement and negative pressure wound therapy (NPWT), but three surgical services recommended amputation. Due to multivessel disease and no donor vessel, a plan for staged reconstruction was executed. The Achilles tendon was resected, and a small intestinal submucosa extracellular matrix (SIS-ECM) was applied over a sural-based adipofascial flap in preparation a split-thickness skin graft (STSG) to the foot, with a full-thickness skin graft on the donor site. At 23 days after SIS-ECM application, the STSG had healed, there was functional ankle fusion, and the patient was able to ambulate.

Present-SIS-ECM applied ation

Day 23, STSG

Day 23, ambulating

reconstructing a <2.5 cm digital nerve gap at month 12.⁷⁰ In a 2017 retrospective study by Rinker, processed nerve allografts in 28 patients with traumatic digital nerve injuries resulted in recovery in 86% of the repairs.⁷¹

Consensus statement: Processed nerve allografts, used as conduits to wrap around reconstructed nerves, should be included under the CAMPs umbrella.

Pilonidal sinus

CAMPs can be used to facilitate closure of pilonidal cyst sinuses (Case study 15). Three different studies reported on the use of an ECM (either OFM or porcine liver) either as a filling dressing for the sinus or under a reconstructive flap. 72-74 Two of the studies were on paediatric populations with no adverse effects and good wound closure.72,73

Podiatric surgery

CAMPs have been used to successfully support soft-tissue repair following podiatric surgical procedures (*Case studies 16–19*), particularly those related to the treatment of diabetic foot ulcers (DFUs) and drainage and excision of cellulitic abscesses. A 2024 case series by Abdo and Couch investigated the use of a three-dimensional hepatic porcine acellular collagen matrix (3D-ACM) after surgical treatment of DFUs characterised by depth, tunnelling, undermining or irregular shapes that had been present for at least 4 weeks. Of

Case study 22. Necrotising fasciitis reconstructed with small intestinal submucosa extracellular matrix and skin grafting

Courtesy of Smith+Nephew

A 52-year-old man presented with necrotising fasciitis affecting the lower abdomen, perineum and peri-genital area. He also had a colostomy and type 2 diabetes. Following excision of the affected tissue, reconstruction began with small intestinal submucosa extracellular matrix (SIS-ECM) placed on all exposed muscle tissue. He then had a full-thickness skin graft (FTSG) to the penis and split-thickness skin grafts (STSGs) to the FTSG donor site, perineum and peri-genital area. On day 8, the genital and peri-genital skin grafts were healing, and there was granulation tissue on the muscular abdomen. A lightweight large-pore polypropylene mesh onlay was placed and covered with second application of SIS-ECM. On day 22, the mesh was covered in healthy granulation tissue. After 4 years, there was little visible evidence of the extensive wounds and grafting.

Presentation

Day 1

Day 8

Day 22

Year 4

Case study 23. Excised sacral pressure injury reconstructed with three-layer ovine forestomach matrix and flap advancement Courtesy of Abigail E Chaffin

A 25-year-old man, paraplegic from a motor vehicle accident, presented with a recurrent stage IV sacral pressure injury and a new stage IV left ischial pressure injury with significant osteomyelitis extending from the ischium to the posterior column of the acetabulum. The sacral pressure injury was excised and the bone resected, after which wound was reconstructed with advancement of left hamstring, gluteus maximus muscle flaps and a complex layered skin closure in the gluteal crease involving three-layer ovine forestomach matrix. The incision healed by week 5, with no complications as of 6 months.

Month 6

Case study 24. Dorsal crush injury reconstructed with an antimicrobial synthetic polymeric matrix

Courtesy of Damien M Dauphinee

A non-diabetic 98-year-old woman presented with a dorsal crush injury after a sledgehammer fell on her foot 5 weeks before. The wound was covered in black leathery eschar, likely due to anti-coagulant status. Hyperbaric oxygen therapy was contraindicated by the patient's age. The wound underwent sharp and enzymatic (collagenase) debridement of the eschar, followed by three applications of an antimicrobial synthetic polymeric matrix to control bioburden. The wound progressed rapidly to granulation and epithelialisation, reducing in size at days 8 and 15, with full closure by day 28.

Day 0

Day 8

Day 15

Day 28

the treated wounds, 62% reached 50% closure by 4 weeks, and 54% were fully closed by 12 weeks. The findings suggest that 3D-ACM provides a protective microenvironment conducive to wound healing, making it a valuable option for managing complex DFUs with deep or tunnelling characteristics.⁷⁵

A 2023 case series by Bosque et al evaluated OFM in the surgical management of 50 challenging lower-extremity soft-tissue defects with exposed structures in patients with multiple comorbidities. One application of OFM was effective in regenerating well-vascularised neodermis, with a mean time to full granulation of 26.0 \pm 22.2 days. 41 This data was further validated by a prospective study of 130 lower extremity defects managed with OFM. Despite nearly 50% of the patients in the

Case study 25. Open hip defect reconstructed with ovine forestomach matrix Courtesy of Michael Cormican

A 36-year-old man presented with an 18×13×20 cm full-thickness right hip wound from a motor vehicle accident 5 days previous. He had been haemodynamically unstable and had undergone exploratory laparotomy with resuscitative endovascular balloon occlusion of the aorta (REBOA), as well as serial sharp debridement and lavage, alongside application of a haemostatic clotting agent, 125 mmHg negative pressure wound therapy (NPWT) and 2000 mg of powdered ovine forestomach matrix (OFM) hydrated with blood in situ. Subsequently, two five-layer 10×20 cm pieces of OFM were quilted together and stapled to the wound, followed by application of a petroleum gauze contact layer and 125 mmHg NPWT. By day 8, the OFM had rehydrated and was integrating well, with formation of robust, vascular granulation tissue. The wound had significantly reduced in area by week 4, 95% epithelialised by week 11 and fully epithelialised by week 13 (no photo). At week 21, the patient was highly satisfied with the scar and able to ambulate. Pain was well controlled throughout, and there were no complications.

Presentation

Powdered OFM

Day 5, after debridement

Day 5, layered OFM

Day 8

Week 4

Week 11

Month 2 after closure

cohort being positive for osteomyelitis, the median time to vascularised tissue coverage or infill of the defect was 30 days, with no documented infections or graft explants.⁴²

Pyoderma gangrenosum

Five studies reported that the use of dHACM in conjunction with surgical debridement and immunotherapy resulted in decreased inflammation, pain and metalloproteinase levels, as well as increased cellular proliferation and closure an STSG.76-80

Tissue flaps and grafts

CAMPs can be used in combination with tissue flaps and grafts for a multimodal approach to soft-tissue reconstruction in a variety of presentations, including necrotising fasciitis

(Case studies 20-23). For example, certain CAMPs, including OFM and select amnions, can be placed beneath a tissue flap to augment the repair or support an at-risk flap.81,82

Trauma

CAMPs have been used in traumatic wounds with positive outcomes (Case studies 24 and 25). A 2023 case series by Cormican et al demonstrated that OFM was able to facilitate the formation of functional, well-vascularised soft tissue in 13 large, complex and contaminated volumetric soft-tissue defects. 83 A 2021 case study by Eudy et al demonstrated a living cellular skin substitute to be a viable alternative treatment option to STSG for full-thickness skin injury in paediatric patients.84

Fitting CAMPs in the care plan

CAMPs can be used on a wide variety of acute, hard-to-heal and surgical wounds, with the appropriacy of using CAMPs in specific clinical presentations dependent on the creative judgement of the physician. 85,86 CAMPs can eliminate the need for flaps for select patients, which are often performed to cover structures such as bone, joints, tendons and cartilage that will not support coverage with a skin graft due to lack of vascularity. The use of a CAMP allows growth of tissue over structures that otherwise would not allow skin grafting. Some simply create granulation tissue, but others such as dermal regeneration templates, decellularised matrices and biodegradable temporising matrix create a substance that looks histologically different from granulation tissue and represents a neodermis that is suitable for grafting.44,87

Early intervention and the reconstructive ladder

Reports demonstrate numerous important clinical benefits from appropriate intervention with CAMPs early in a patient's care plan, rather than as a salvage technique of last resort (Box 1). There is extensive evidence in DFUs and VLUs that early use of CAMPs in conjunction with standard of care supports faster healing, fewer complications and better patient quality of life, $^{88-93}\,$ with consequent economic benefits for providers and patients.⁹⁴

Consensus statement: The significant benefits of earlier use of CAMPs, being proven in the most challenging-to-heal wound types, should apply equally to acute surgical and traumatic wounds, making CAMPs a valuable tool in the surgical armamentarium.

However, in current practice, CAMPs may not be considered an option in the early stages when they might provide the optimal

Box 1. Potential benefits of early intervention with CAMPs

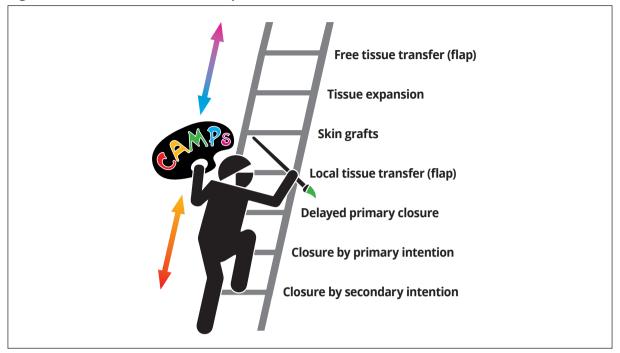
- Prevent hospitalisation when CAMP can be applied in an outpatient setting 129,130
- Contain living cells and growth factors known to stimulate wound healing 131,132
- Support angiogenesis and dermal fibroblast proliferation, reducing time to full wound closure¹⁰⁰
- Provide scaffolding for tissue ingrowth¹³³⁻¹³⁵
- Increase tensile or mechanical strength of tissue¹³⁴
- Protect underlying vital structures, such as bone, tendons, ligaments, muscles and organs^{43,46}
- Reduce scarring due to fewer myofibroblasts and increased type III collagen^{136–139}
- Improve aesthetic outcomes¹⁴⁰
- Obviate more invasive procedures, such as amputations, flaps or tissue transfers⁴⁴
- Minimise complications and reduce hospital length of stav141-142

benefit. In soft-tissue reconstruction of acute surgical and traumatic wounds, the early availability of CAMPs depends on where they fit on the reconstructive ladder (Figure 1). When a care plan is guided by the reconstructive ladder, treatment begins at the bottom rung with the simplest appropriate method available. Treatment can only be escalated through more complex methods if simpler methods prove inappropriate or ineffective for repairing the defect and restoring tissue function.88,95

Consensus statement: The reconstructive ladder for acute surgery for soft-tissue reconstruction should be updated to guide the optimal use of CAMPs. This could include introducing CAMPs application into care plans before more complex procedures, such as tissue transfers and flaps. For example, CAMPs could be an option to facilitate healing in preparation for a skin graft or during the proliferative phase of closure by secondary intention. This could shorten the reconstructive ladder for patients, as well as avoid the need for more invasive and risky procedures. Moreover, CAMPs that can reinforce the structure of soft tissue in surgical sites may have a role at every rung of the reconstructive ladder, including in relation to complex patients in whom flaps and transfers are unavoidable.

Definitively situating CAMPs within the formal care plan will also reassure patients that these advanced treatments are not an option of last resort.31

The traditional reconstructive ladder has been critiqued as insufficient for addressing the complex comprehensive needs of patients undergoing soft-tissue reconstruction in acute surgical and traumatic wounds. Alternative models include the plastic surgery compass, in which the ladder of procedural complexity is considered alongside the three other dimensions of personal factors, patient risks and the anatomical problem. 96


Consensus statement: The use of CAMPs and their incorporation into care plans should not only improve overall clinical and economic outcomes; it could also help stakeholders move the framework for soft-tissue repair in acute and surgical wounds beyond an ordinal ladder and into more patient-centred and multidimensional practices.

Assessment, preparation and application

CAMPs should always be used as an adjunct to a multifaceted and comprehensive care plan, rather than being considered a replacement for any of the established evidence-based fundamentals of wound care.6 Moreover, care plans and treatment protocols should be guided by the appropriate frameworks and guidelines for the patient's presentation and the chosen interventions.

Figure 1. Use of CAMPs at each step of the reconstructive ladder

The first step in any care plan is a comprehensive patient assessment to identify any potential contraindications or relevant comorbidities. Several potential contraindications must be carefully considered before making a clinical decision to proceed with using a CAMP (Box 2). Ongoing smoking or vaping should be considered cautions, as these increase risk of failure, although there may be significant benefits in the use of a CAMP in the treatment of a DFU on a patient who smokes. 97 Comorbidities that may inhibit wound healing should be adequately managed through prehabilitation before proceeding. This comprehensive approach to patient care is imperative for success of any wound intervention but especially for the use of a CAMP. Assessment is also an opportunity to obtain patient consent for CAMPs application.

Consensus statement: The principles of proper wound management apply equally to acute and hard-to-heal wounds. For example, underlying aetiologies or contributory comorbidities require best-practice treatment, such as revascularisation for arterial insufficiency, compression therapy for venous insufficiency, offloading for DFUs and pressure redistribution for pressure injuries (PIs). One of the challenges of acute surgery is to address comorbidities prior to the surgical procedure. Likewise, a successful care plan involving CAMPs should also be holistic, aiming to treat the whole patient, incorporate their goals and manage comorbidities.

The next essential step is adequate preparation of the wound bed or surgical site, as described in the TIMERS framework for best-practice wound care (Box 3). CAMPs can play a critical role in the repair and regeneration (R) aspect of TIMERS, as well as potentially help modulate inflammation and infection. 98,99

Consensus statement: An adequately prepared surgical site or wound bed may not require prophylactic antimicrobial dressings in conjunction with the use of CAMPs, and use of cytotoxic products is strongly discouraged except in the presence of invasive pathogens or when the benefits outweigh the risks.

A CAMP should be first applied as early as possible, such as at the time of surgical debridement or flap/tissue reconstruction. For clean surgical wounds, this may mean proper coaptation

Figure 2. CAMP sutured in place with full contract with the underlying tissue

Courtesy of Rose Hamm

Box 2. Potential contraindications for CAMPs

- Infected tissue in the wound bed
- · Necrotic tissue in the wound bed
- Allergy to components
- Religious objections to source tissue or other components
- Unmanaged relevant comorbidities (e.g., uncontrolled glucose levels due to diabetes)
- Low chance of adherence to postapplications instructions

(drawing together of separated tissue) and apposition to the underlying surgical bed and surgical fixation of the graft as indicated (Figure 2). Further RCTs are needed to confirm optimal time of application for acute surgical wounds. Application of a CAMP should adhere to the manufacturer's product-specific protocols, which should be reviewed prior to application (e.g. hydrating a dehydrated or cryopreserved product).6

Consensus statement: Generally, the CAMP should be placed directly on the healthy tissue in the wound. Care should be taken to maintain full contact with the wound surface. because dead space between the two surfaces can lead to accumulation of fluid (seroma or haematoma), which can result in CAMP failure.

CAMPs can be secured with sutures, staples, closure strips or other means, as indicated. The CAMP is generally covered with a secondary bolster dressing, NPWT or compression, which can also help eliminate dead space between the wound bed and the CAMP. The goal of the secondary dressing is to prevent slippage and minimise shear between the surfaces and thereby reduce the risk of product failure and the possible need for reapplication.⁶ After application, other components of best practice for the wound diagnosis may need to be provided.

Consensus statement: A complete patient assessment and adequate preparation of the surgical site or wound bed are required prior to the application of a CAMP to any wound.

Monitoring and reapplication

The optimal frequency and number of CAMPs application has not been definitively determined. These are likely to vary from case to case according to the function of the specific product and the needs of the individual patient, as well as the wound's size, aetiology and expected outcome, such as preparation for a skin graft versus complete closure by secondary intention. For example, in a multicentre prospective study by Galiano et al, weekly reapplication on DFUs resulted in 85% of participants healed within 12 weeks. 100 There is variation in reported application rates for CAMPs used in acute trauma and

Box 3. TIMERS wound care tool^{98,99}

- Tissue removal of devitalised tissue via debridement
- Inflammation and infection control of infection and inflammation through debridement and antimicrobials and cleaning with surfactants
- M Moisture maintenance of a moist environment conducive to healing
- E Edges refashioning and debridement to remove callus
- R Repair/regeneration consideration of advanced therapies such as CAMPs to facilitate closure of hard-to-heal wounds
- S Social and patient-related factors promotion of patient concordance and satisfaction with treatment with patient education, active listening and motivational interviewing

reconstructive surgery. 42,101 Repeated applications are usually performed in an outpatient setting. However, for the majority of commercially available CAMPs, the first application is usually left in place for 7-14 days, depending on the goal of treatment. This is supported by a 2021 retrospective analysis of Medicare patients with lower extremity DFUs treated with CAMPs, in which reapplication occurred every 7-14 days, ¹⁰² the principle of which should be transferable to acute surgical and traumatic wounds.

Consensus statement: After application of a CAMP, the patient should be monitored. At every dressing change, the patient must be reassessed to determine their status and wound progression, as well as identify any factors that could affect the healing process. This reassessment allows the care plan to be adjusted accordingly and the CAMP to be reapplied or discontinued as appropriate. Ideally, a patient's progress will be monitored with comparative outcome measures and digital photographs taken at regular intervals. This monitoring data can support clinical decisions for the individual patient, as well as provide surveillance data to study the wider population.

Consensus statement: The multidisciplinary team should receive education regarding post-application care of a CAMP, covering the option of only changing the secondary dressing, the need to take care when removing secondary dressings and the importance of not accidentally removing the CAMP.

Adjunct therapies

Use of CAMPs in soft-tissue reconstruction in acute surgical and traumatic wounds could be supported by adjunct therapies, extrapolating from examples established in hard-to-heal wounds:

- NPWT may be used to stabilise the CAMP, reduce the interstitial oedema and prevent shear, following examples in DFUs, scalp necrosis and wounds associated with paediatric disorders, 103-106 although a study by Veale et al illustrated the importance of pre-clinical testing to ensure the selected CAMP does not reduce the negative pressure delivered by NPWT systems. 107
- Hyperbaric oxygen (HBO₂) therapy can be used in conjunction with CAMPs, following reported treatment for DFUs $^{108-110}$ and irradiated skin after tumour removal. 111 In both cases, the benefits of HBO₂ therapy include maintenance of tissue oxygen supply; improvements in neovascularisation and tissue perfusion; reductions in inflammation and oedema; and bacteriostatic/bactericidal effects. 112-116 Recommendations for HBO₂ therapy vary internationally.
- Electrical stimulation can be used with CAMPs, following a case series by Zhou et al showing that, when a high volt pulsed current was placed over a saline-soaked collagen dressing (left in place after the treatment enhanced healing) on full-thickness hard-to-heal wounds of at least 6 weeks' duration, both surface area and volume decreased significantly after 2 weeks of treatment. 117 The effects of electrical stimulation on wound healing include antibacterial actions and galvanotaxis, as well as increased growth factor secretion, proliferation and angiogenesis. 118,119

There are several barriers to greater uptake of CAMPs for soft-tissue reconstruction in acute surgical and traumatic wounds, including training, costs and reimbursement.

Training

CAMPs can be applied by healthcare providers who are trained in their selection and application. In practice, this restricts use of CAMPs to surgeons, physicians and their assistants who have the skills to perform surgical debridement, suturing or stapling, which may be needed as part of the application process, alongside other specialist wound-care skills, such as wound bed preparation.

Providers in fields including soft-tissue reconstruction in acute surgical and traumatic wounds can be trained in these skills. This training could follow a model established in a 2-day, immersive, cadaver-based skills course reported by Bowyer et al. 120,121 This standardised model, developed with best practices in instructional design, demonstrated significant improvement in procedural skill performance following direct measurement after training. 120,121 Alternatively, manufacturer representatives may provide guidance on the use of a CAMP in both the office and operating room.

Consensus statement: Providers working in acute surgery should receive specialist training on the science behind CAMPs.

Product selection

There is considerable variation between and within each compositional category of CAMPs (*Table 2*). Different CAMPs vary in their mechanism of action, as well as in the effect they have on cellular activity and healing processes. Placing a CAMP in contact with host tissue may result in the following three activities:

Extracellular signalling

© 2025 MA Healthcare Ltd

- Intercellular communication between the cells in the CAMP and the cells in the host tissue
- Extracellular matrix (ECM)-linked or scaffolding activities.⁶

Consensus statement: Understanding how different CAMPs work is critical in the selection of the optimal product for each individual patient.

There is a wide range of CAMPs on the market, with different components and modes of action. Consequently, some CAMPs may be more suitable than others for different diagnoses, presentations and stages of wound healing. For example, there is evidence from murine studies and clinical data by Reed that

dermal allografts promote re-epithelialisation, amniotic membrane allografts promote granulation and angiogenesis and dHACM allografts support all stages of wound healing. However, the present understanding of these differences in suitability is limited and represents a gap in understanding. 122

Consensus statement: The ongoing development of CAMPs would benefit from surveillance data collected through a CAMPs registry, established in the model of cancer registries. It would also be valuable to collect comparative data on how frequently CAMPs are used by different specialties, including how CAMPs-related costs are reimbursed and distributed throughout the healthcare system.

Costs

Evidence suggests that the cost of CAMPs is outweighed by the financial impact of improvements in clinical outcomes brought about by their appropriate use. Cost savings include reductions in healing time, operating-room hours and dressings changes, as well as less-intense labour demands and faster return to function and work. ¹²³ Patients and wider society also benefit economically from use of CAMPs to accelerate wound-healing times and thus functional recovery and return to work, thereby reducing loss of income and productivity. ⁶⁹ The cost-effectiveness of CAMPs has been demonstrated in several studies on hard-to-heal wounds:

- In a 2021 retrospective analysis by Armstrong et al, use of CAMPs in 900 000 Medicare patients with DFUs resulted in significantly fewer minor amputations, major amputations, emergency department visits and readmissions.¹⁰²
- In a 2022 companion retrospective analysis by Tettelbach et al, use of dHACM in 1 million Medicare patients with DFUs resulted in fewer amputations and lower use of healthcare resources, amounting to a cost saving of \$3670 per patient.¹²⁴

Table 2. Categorisation of CAMPs⁶

Table 2. Categorisation of critin 5		
Category	Subcategory	
Cellular	Autograft (viable)Allograft (viable or non-viable)	
Acellular	Allograft Xenograft	
Matrix-like	Natural Synthetic	

- In a similar 2021 study in the UK, use of dHACM in DFUs in secondary care was found to be cost-effective.¹²⁵
- In a 2024 cost-effectiveness analysis, use of CAMPs in 530 220 Medicare patients with VLUs resulted in better clinical outcomes and a cost saving of \$1178 per patient.⁹⁴
- A 2020 case series by Buck reported that the application of borate-based bioactive glass fiber (BBGF) advanced

Table 3. CAMPs application procedure codes⁷

Table 3	. CAMPs application procedure codes
Code	Details
15271	Application of skin substitute graft to trunk, arms, legs, total wound surface area up to 100 cm ² ; first 25 cm ² or less wound surface area
15272	Application of skin substitute graft to trunk, arms, legs, total wound surface area up to 100 cm²; each additional 25 cm² wound surface area, or part thereof*
15273	Application of skin substitute graft to trunk, arms, legs, total wound surface area greater than or equal to 100 cm ² ; first 100 cm ² wound surface area, or 1% of body area of infants and children
15274	Application of skin substitute graft to trunk, arms, legs, total wound surface area greater than or equal to 100 cm ² ; each additional 100 cm ² wound surface area or part thereof, or each additional 1% of body area of infants and children, or part thereof*
15275	Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet and/or multiple digits, total wound surface area up to 100 cm ² ; first 25 cm ² or less wound surface area
15276	Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits, total wound surface area up to 100 cm²; each additional 25 cm² wound surface area, or part thereof*
15277	Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits, total wound surface area greater than or equal to 100 cm ² ; first 100 cm ² wound surface area, or 1% of body area of infants and children
15278	Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits, total wound surface area greater than or equal to 100 cm ² ; each additional 100 cm ² wound surface area or part thereof, or each additional 1% of body area of infants and children or part thereof*
15777	Implantation of an acellular dermal matrix
	· · · · · · · · · · · · · · · · · · ·

^{*}List separately in addition to code for primary procedure

S18

- wound matrix on hard-to-heal wounds that had not responded to other strategies produced significant cost savings. 126
- In a 2024 cost-effectiveness comparison by Nherera and Banerjee, the total cost of caring for a patient with a DFU was lower when using five of the six CAMPs than standard of care alone. The authors cautioned that there was no head-to-head evidence comparing the different CAMPs, and the cost analysis would need to be updated when more direct evidence became available.¹²³

Consensus statement: The economic benefits of appropriate early use of CAMPs in soft-tissue repair in acute surgical and traumatic wounds may outweigh the product costs and deserve ongoing tracking studies.

Reimbursement and coding

In the US, CAMPs are reimbursed via a coding system, explained in detail by Schaum in 2015^{127} and $2019.^{128}$ There are application procedure codes for the specific application undertaken (*Table 3*). The CAMP must be applied to a wound of an allowable diagnosis, and these application procedure codes can only be used with CAMPs that have been fixated with the physician's choice of fixation. 127,128,7 There are separate procedure codes for low-cost CAMPs. Code 15777 is for implanted CAMPs, while the others are for topical application.

Consensus statement: Reimbursement practices should be confirmed with each patient's insurance and their local Medicare administrative contractor (MAC).

The US system of reimbursement for CAMPs varies between settings, leading to a complex multitude of pathways, including the healthcare common procedure coding system (HCPCS), diagnosis-related group (DRG) payments, the hospital outpatient prospective payment system (OPPS) and ambulatory surgical center (ASC) payments. When a CAMP is used on a hard-to-heal wound, the cost is often reimbursed directly, based on an application procedure code and an HCPCS code for the specific CAMP. However, when a CAMP is used in an acute surgical or traumatic wound, the cost is not reimbursed directly. Instead, the CAMP forms part of a treatment bundle that limits how much payment a hospital can receive for the treatment of various different clinical indications, and the cost is paid out of the DRG payment.

Consensus statement: In cases where pre-approval of the CAMP is required prior to application, it is mandatory that support personnel understand the approval process, know the checklist system of requirements for approval and coverage, and can convey the necessity of pre-approval to the patient. Even if prior authorisation and predetermination are approved, all checklist items on a payor list should be included in the clinical notes to avoid designation as medically unnecessary and to minimise denials of coverage at the time of payment.

Conclusions

A review of recent evidence shows that CAMPs have not only become established in best practice for hard-to-heal wounds, they are also increasingly being used across a range of surgical specialties, with positive clinical and economic outcomes. This suggests that CAMPs should play a prominent role in soft-tissue reconstruction in acute surgical and traumatic wounds.

Moreover, evidence suggests that CAMPs should be deployed relatively early in the wound-healing process, rather than only as a fallback after other treatments have failed. Early use can improve healing times, patient wellbeing and aesthetic outcomes, as well as minimise healthcare expenditure. As such, early use of CAMPs should be recognised as a best practice in soft-tissue reconstruction in acute surgical and traumatic wounds. Updating the reconstructive ladder to incorporate CAMPs at early stages, where they will be most effective, is essential. 88,95

Wider and earlier use of CAMPs in soft-tissue reconstruction in acute surgical and traumatic wounds will require developing best practice in assessment, preparation and application, as well as monitoring and reapplication. More data is required on the role of adjunct therapies and the comparative impact of different CAMPs in particular presentations. This information could be gathered through a combination of case studies, RCTs and evaluation of extensive surveillance data.

Consensus statement: The term 'CAMPs' should be used consistently among all stakeholders in all specialties. Earlier application of CAMPs in the wound care plan should be considered to reduce healing times, pain and scarring, as well as minimise dressing changes, enhance functional recovery and provide longer-term cost savings for individual patients and the medical economy. Likewise, the use of CAMPs should be accompanied by extensive surveillance to collect data, study their impact and optimise their use.

References

- 1. Davis JS. II. Skin Grafting at the Johns Hopkins Hospital. Ann Surg. 1909;50(3):542-549. https://doi.org/10.1097/00000658-190909000-00002
- 22. Stern M. The grafting of preserved amniotic membrane to burned and ulcerated surfaces, substituting skin grafts: a preliminary report. JAMA. 1913;60(13):973. https://doi.org/10.1001/jama.1913.04340130021008
- 3. Das De S, Sebastin SJ. Considerations in flap selection for soft tissue defects of the hand. Clin Plast Surg. 2019;46(3):393–406. https://doi.org/10.1016/j.cps.2019.03.010

 4. Alet J-M, Weigert R, Castede J-C et al. Management of traumatic
- 4. Ale J-M, Weiger CR, Castede J-C et al. Management of tradisoff tissue defects with dermal regeneration template: A prospective study. Injury. 2014;45(7):1042–1048. https://doi.org/10.1016/j.injury.2013.11.034

 5. De Boeck K, Castellani C, Elborn JS. Medical consensus,
- guidelines, and position papers: A policy for the ECFS. J Cystic Fibrosis. 2014;13(5):495–498. https://doi.org/10.1016/j. jcf.2014.06.012
- 6. Wu S, Carter M, Cole W et al. Best practice for wound repair and care with color with the color with the products (CAMPs). J Wound Care. 2023;32(Sup4b):S1–S31. https://doi.org/10.12968/jowc.2023.32.Sup4b.S1

 7. Medicare Coverage Database. Skin substitute grafts/cellular and tissue-based products for the treatment of diabetic foot ulcers and
- venous leg ulcers 2024. https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?lcdid=39756&ver=7&contractorName=all& contractorNumber=all&proposedStatus=all&sortBy=noticeStart& bc=10 (accessed November 2024)
- **8.** Center for Devices and Radiological Health. Medical device safety and the 510(k) clearance process. FDA. 2024
- 9. Jamshidi R. Biological dressings for the management of enteric
- Jamshidi K. Biological dressings for the management of enteric fistulas in the open abdomen: a preliminary report. Arch Surg. 2007;142(8):793. https://doi.org/10.1001/archsurg.142.8.793
 Delgado-Miguel C, Miguel-Ferrero M, Díaz M et al. Acellular flowable dermal matrix for ostomy reconstruction: a safe and effective minimally invasive technique. Wound Manag Prev. 2023;69(4). https://doi.org/10.25270/wmp.22080
 Taarea R. Early experience with ovine forestomach matrix for the reconstruction of abdominal defects following emergency open abdomen surgery at a level 2 trauma center. Trauma Case Rev.
- abdomen surgery at a level 2 trauma center. Trauma Case Rev. 2023;10(1):102. https://doi.org/10.23937/2469-5777/1510102
- 12. Fernandez L, Schar A, Matthews M et al. Synthetic hybrid-scale fiber matrix in the trauma and acute care surgical practice. Wounds. 2021;33(9):237-244
- **13.** Fernandez LG, Murry J, Matthews MR et al. Definitive closure using an ovine reinforced tissue matrix in contaminated penetrating abdominal trauma. Am J Case Rep. 2024;25. https://doi. org/10.12659/AJCR.943188
- 14. Sweitzer K, O'Shea A, Tawil C et al. Hernia recurrence and complications after abdominal reconstruction with reinforced versus nonreinforced biologic mesh. Ann Plast Surg. 2024;92(45):S196–S199. https://doi.org/10.1097/SAP.000000000003875

 15. Miller DL, Durden FL. Chest Wall Reconstruction Utilizing
- Ovine-derived Reinforced Tissue Matrix. Ann Thorac Surg. 2023;115(5):1266–1272. https://doi.org/10.1016/j. athoracsur.2021.12.062
- **16.** Miller DL, Force SD, Pickens A et al. Chest wall reconstruction
- **16.** Miller DL, Force SD, Pickens A et al. Chest wall reconstruction using biomaterials. Ann Thorac Surg. 2013;95(3):1050–1056. https://doi.org/10.1016/j.athoracsur.2012.11.024 **17.** Sakharuk I, McKinley T, Moore G et al. Ewing Sarcoma-Chest Wall Reconstruction Following Resection of Rare Primary Chest Wall Tumor. Am Surg. 2024;90(7):1942–1944. https://doi.org/10.1177/00031348241241635
- 18. Bryant JR, Eid R, Spann JC et al. Chest wall reconstruction with creation of neoribs using mesenchymal cell bone allograft and porcine small intestinal submucosa. Plast Reconstr Surg. 2010;126(3):148e–149e. https://doi.org/10.1097/PRS.0b013e3181e3b5ad
- **19.** Oliveira TC, Barlow J, Gonçalves L et al. Teleconsultations reduce greenhouse gas emissions. J Health Serv Res Policy. 2013;18(4):209–214. https://doi.org/10.1177/1355819613492717 **20.** Marulli G, De laco G, Ferrigno P et al. Sternochondral replacement: use of cadaveric allograft for the reconstruction of anterior chest wall. J Thorac Dis. 2020;12(1):3–9. https://doi.org/10.21037/id.2019.07.92 org/10.21037/jtd.2019.07.82
- 21. Dell'Amore A, Kalab M, Miller AS et al. Indications and results of sternal allograft transplantation: learning from a worldwide experience. Ann Thorac Surg. 2021;112(1):238–247. https://doi.

- org/10.1016/j.athoracsur.2020.08.032
- org/10.1016/j.athoracsur.2020.08.032

 22. Manning SW, Humphrey DA, Shillinglaw WR et al. Efficacy of a bioresorbable matrix in healing complex chronic wounds: an open-label prospective pilot study. Wounds. 2020;32(11):309–318

 23. Haddad AG, Giatsidis G, Orgill DP et al. Skin substitutes and bioscaffolds. Clin Plast Surg. 2017;44(3):627–634. https://doi.org/10.1016/j.cps.2017.02.019

 24. Anup P, Vishwanath G, Tikar CR et al. A study of cadaveric skin
- graft harvest and usage: an observational prospective pilot study. Cureus. 2024. https://doi.org/10.7759/cureus.69932 25. Klama-Baryła A, Sitkowska A, Łabuś W et al. Amnion as an
- innovative antiseptic carrier: a comparison of the efficacy of allogeneic and xenogeneic transplantations in the context of burn therapy. Medicina. 2024;60(6):1015. https://doi.org/10.3390/ medicina60061015
- 26. Moghimi MH, Salehian M, Abdi M et al. The impact of an 26. Moghimi MH, Salehian M, Abdi M et al. The impact of an open-label design on human amniotic membranes vs. silver sulfadiazine dressings for second-degree burns: a randomized controlled clinical trial. BMC Surg. 2024;24(1):309. https://doi.org/10.1186/s12893-024-02554-5
 27. Kenny EM, Lagziel T, Hultman CS et al. Skin substitutes and autograft techniques. Clin Plast Surg. 2024;51(2):241–254. https://doi.org/10.1016/j.cps.2023.12.001
 28. Al Mousa RH, Bosque BA, Dowling SG. Use of ovine forestomach matrix in the treatment of facial thermal burns. Wounds. 2022;34(4):E17–E21. https://doi.org/10.25270/wnds/2022.e17e21
- 2022;34(4):E17–E21. https://doi.org/10.25270/wnds/2022.e17e21
- 29. Moraes FCA de, Ferraz Barbosa B, Sepulvida D et al. Nile Tilapia Skin Xenograft Versus Silver-Based Dressings in the Management of Partial-Thickness Burn Wounds: A Systematic Review and Meta-Analysis. J Clin Med. 2024;13(6):1642. https://doi.org/10.3390/ icm13061642
- 30. Lima Júnior EM, De Moraes Filho MO, Costa BA et al. Innovative burn treatment using tilapia skin as a xenograft: a phase II randomized controlled trial. J Burn Care Res. 2020;41(3):585–592. https://doi.org/10.1093/jbcr/irz205
- a1. Glat PM, Davenport T. Current techniques for burn reconstruction: using dehydrated human amnion/chorion membrane allografts as an adjunctive treatment along the reconstructive ladder. Ann Plast Surg. 2017;78(2):S14. https://doi.org/10.1097/SAP.0000000000000980

 32. Eichberg DG, Ali SC, Buttrick SS et al. The use of dehydrated amniotic mombrane allograft for the augmentation of dural reading.
- amniotic membrane allograft for the augmentation of dural repair in craniotomies. Br J Neurosurg. 2018;32(5):516–520. https://doi.org/10.1080/02688697.2018.1490943
- 33. Eichberg DG, Richardson AM, Brusko GD et al. The use of dehydrated amniotic membrane allograft for augmentation of dural repair in transsphenoidal endoscopic endonasal resection of pituitary adenomas. Acta Neurochir (Wien). 2019;161(10):2117–2122. https://doi.org/10.1007/s00701-019-04008-x
- 34. Endicott L, Ehresman J, Tettelbach W et al. Dehydrated human amnion/chorion membrane use in emergent craniectomies shows minimal dural adhesions. J Wound Care. 2023;32(10):634–640. https://doi.org/10.12968/jowc.2023.32.10.634

 35. Bohn GA. Using ovine extracellular matrix in difficult to close
- excisions of common skin cancer: an evolving new technique. Surg Technol Int. 2020;37:49–53
- **36.** Lu KW, Khachemoune A. Skin substitutes for the management of mohs micrographic surgery wounds: a systematic review. Arch Dermatol Res. 2022;315(1):17–31. https://doi.org/10.1007/ s00403-022-02327-1
- 37. Melnychuk I. Extracellular matrix-based collagen dressings for scalp repair following mohs micrographic surgery. Cutis. 2023;111(5). https://doi.org/10.12788/cutis.0796 **38.** Campagnari M, Jafelicci AS, Carneiro HA et al. Dermal
- substitutes use in reconstructive surgery for skin tumors: a single-center experience. Int J Surg Oncol. 2017;2017:1–8. https://doi.org/10.1155/2017/9805980
- 39. Kapp D, Pfendler L. Management of post-Mohs surgical wounds with a hypothermically stored amniotic membrane: a case series. J Wound Care. 2024;33(Sup5):S22–S27. https://doi.org/10.12968/jowc.2024.33.Sup5.S22
- 40. Simcock J, May BCH. Ovine forestomach matrix as a substrate for single-stage split-thickness graft reconstruction. Eplasty. 2013;13:e58
- 41. Bosque BA, Dowling SG, May BCH et al. Ovine forestomach matrix in the surgical management of complex lower-extremity soft-tissue defects. J Am Podiatr Med Assoc. 2023;113(3):22–081. https://doi.org/10.7547/22-081
- 42. Lawlor J, Bosque BA, Frampton C et al. Limb salvage via surgical

soft-tissue reconstruction with ovine forestomach matrix grafts: a prospective study. Plast Reconstr Surg Glob Open. 2024;12(12):e6406. https://doi.org/10.1097/ GOX.000000000006406

43. Bohn GA, Chaffin AE. Extracellular matrix graft for reconstruction over exposed structures: a pilot case series. J Wound Care. 2020;29(12):742–749. https://doi.org/10.12968/jowc.2020.29.12.742

- 44. Thornburg DA, Kowal-Vern A, Tettelbach WH et al. Complex limb salvage with placental-based allografts: a pilot study. Surg Sc. 2021;12(3):76–94. https://doi.org/10.4236/ss.2021.123010

 45. Ohara SY, Delapena SA, Tettelbach WH et al. Limb salvage using human placental allografts: adding to the reconstructive ladder paradigm. Surg Sci. 2022;13(1):1–8. https://doi.org/10.4236/ss. 2022.131001 ss.2022.13100
- 46. Simman R, Hermans MHE. Managing wounds with exposed bone and tendon with an esterified hyaluronic acid matrix (eHAM): a literature review and personal experience. | Am Col Clin Wound
- Spec. 2017;9(1–3):1–9. https://doi.org/10.1016/j.jccw.2018.04.002 **47.** Harris HW, Primus F, Young C et al. Preventing recurrence in clean and contaminated hernias using biologic versus synthetic
- clean and contaminated nernias using biologic versus synthetic mesh in ventral hernia repair: the price randomized clinical trial. Ann Surg. 2021;273(4):648–655. https://doi.org/10.1097/SLA.0000000000004336

 48. Miserez M, Lefering R, Famiglietti F et al. Synthetic versus biological mesh in laparoscopic and open ventral hernia repair (LAPSIS): results of a multinational, randomized, controlled, and double-blind trial. Ann Surg. 2021;273(1):57–65. https://doi.org/10.1097/SLA.00000000000004062
- **49.** Herrero A, Gonot Gaschard M, Bouyabrine H et al. Comparative study of biological versus synthetic prostheses in the treatment of wentral hernias classified as grade II/III by the Ventral Hernia Working Group. J Visc Surg. 2022;159(2):98–107. https://doi.org/10.1016/j.jviscsurg.2021.02.011

 50. Othman S, Christopher A, Patel V et al. Comparative
- effectiveness analysis of resorbable synthetic onlay and biologic
- effectiveness analysis of resorbable synthetic onlay and biologic intraperitoneal mesh for abdominal wall reconstruction: a 2-year match-paired analysis. Plast Reconstr Surg. 2022;149(5):1204–1213. https://doi.org/10.1097/PRS.0000000000009021

 51. Dhanani NH, Lee KH, Olavarria OA et al. Biologic versus synthetic mesh in ventral hernia repair: participant-level analysis of two randomized controlled trials at twenty-four to thirty-six months. Surg Infect. 2023;24(6):554–560. https://doi.org/10.1089/sur.2022.342
- Sur. 2022.342
 Morrison BG, Gledhill K, Plymale MA et al. Comparative long-term effectiveness between ventral hernia repairs with biosynthetic and synthetic mesh. Surg Endosc. 2023;37(8):6044–6050. https://doi.org/10.1007/s00464-023-10082-1
 Diab MM, Patel S, Young C et al. Quality of life measures and cost analysis of biologic versus synthetic mesh for ventral hernia repair. The Proventing Pocurrence in Clean and Contaminated
- repair: The Preventing Recurrence in Clean and Contaminated Hernias randomized clinical trial. Surgery. 2024;175(4):1063–1070. https://doi.org/10.1016/j.surg.2023.11.013 **54.** Siddiqui A, Lyons NB, Anwoju O et al. Mesh type with ventral
- hernia repair: a systematic review and meta-analysis of randomized trials. J Surg Res. 2023;291:603–610. https://doi.org/10.1016/j. jss.2023.07.003
- 55. Mazzola Poli De Figueiredo S, Tastaldi L, Mao R-MD et al. Biologic versus synthetic mesh in open ventral hernia repair: A systematic review and meta-analysis of randomized controlled trials. Surgery. 2023;173(4):1001–1007. https://doi.org/10.1016/j.surg.2022.12.002

 56. Alzahrani A, Alhindi N, Alotaibi S et al. A systematic review and
- meta-analysis of randomized controlled trials for the management of ventral hernia: biologic versus synthetic mesh. Updates Surg 2024;76(8):2725-2731. https://doi.org/10.1007/s13304-024-02001-3
- 57. Olavarria OA, Bernardi K, Dhanani NH et al. Synthetic versus biologic mesh for complex open ventral hernia repair: a pilot randomized controlled trial. Surg Infect. 2021;22(5):496–503. https://doi.org/10.1089/sur.2020.166
- 58. DeNoto G, Ceppa EP, Pacella SJ et al. A prospective, single arm, 58. DeNoto G, Ceppa EP, Pacella SJ et al. A prospective, single arm, multi-center study evaluating the clinical outcomes of ventral hernias treated with OviTex® 15 permanent reinforced tissue matrix: the BRAVO study 12-month analysis. J Clin Med. 2021;10(21):4998. https://doi.org/10.3390/jcm10214998

 59. Chaffin AE, Buckley M-C. Extracellular matrix graft for the surgical management of Hurley stage III hidradenitis suppurativa: a pilot case series. J Wound Care. 2020;29(11):624–630. https://doi.
- org/10.12968/jowc.2020.29.11.624

 60. Manfredini M, Garbarino F, Bigi L et al. Hidradenitis suppurativa: surgical and postsurgical management. Skin Appendage Disord. 2020;6(4):195–201. https://doi.org/10.1159/000507297

 61. Gupta RJ, Connelly ST, Silva RG et al. Use of viable cryopreserved
- placental membrane as an adjunct to facial keloid resection. Plast Reconstr Surg Glob Open. 2018;6(1):e1638. https://doi.org/10.1097/ GOX.0000000000001638

- 62. Yılmaz MM, Akdere ÖE, Gümüşderelioğlu M et al. Biological nerve conduit model with de-epithelialized human amniotic membrane and adipose-derived mesenchymal stem cell sheet for
- membrane and adipose-derived mesenchymal stem cell sheet for repair of peripheral nerve defects. Cell Tissue Res. 2023;391(3):505–522. https://doi.org/10.1007/s00441-022-03732-8 63. Lopes B, Sousa P, Alvites R et al. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int J Mol Sci. 2022;23(2):918. https://doi.org/10.3390/ijms23020918 64. Zhang P-X, Li-Ya A, Kou Y-H et al. Biological conduit small gap sleeve bridging method for peripheral nerve injury: regeneration law of nerve fibers in the conduit. Neural Regen Res. 2015;10(1):71–78. https://doi.org/10.4103/1673-5374.150709 65. Kim JR, Oh SH, Kwon GB et al. Acceleration of peripheral nerve regeneration through asymmetrically porous nerve guide conduit
- regeneration through asymmetrically porous nerve guide conduit applied with biological/physical stimulation. Tissue Eng Part A. 2013;19(23–24):2674–2685. https://doi.org/10.1089/ten. TEA.2012.0735
- 66. Arda MS, Koçman EA, Özkara E et al. Can a Small Intestine Segment Be an Alternative Biological Conduit for Peripheral Nerve Regeneration? Balkan Med J. 2017;34(3):246–254. https://doi.org/10.4274/balkanmedj.2015.1601

 67. Iwao A, Saijo H, Nakayama T et al. Fresh human amniotic
- 67. Iwao A, Saijo H, Nakayama I et al. Fresh human amniotic membrane wrapping promotes peripheral nerve regeneration in PGA-collagen tubes. J Plast Surg Hand Surg. 2023;58:13–17. https://doi.org/10.2340/jphs.v58.6496
 68. Wolfe EM, Mathis SA, Ovadia SA et al. Comparison of Collagen and Human Amniotic Membrane Nerve Wraps and Conduits for Peripheral Nerve Repair in Preclinical Models: A Systematic Review of the Literature. J Reconstr Microsurg. 2023;39(4):245–253. https://doi.org/10.1055/s-0041-1732432 doi.org/10.1055/s-0041-1732432 **69.** Patel VR, Samavedi S, Bates AS et al. Dehydrated human
- amnion/chorion membrane allograft nerve wrap around the prostatic neurovascular bundle accelerates early return to continence and potency following robot-assisted radical prostatectomy: propensity score–matched analysis. Eur Urol. 2015;67(6):977–980. https://doi.org/10.1016/j.eururo.2015.01.012 **70.** Rbia N, Bulstra LF, Saffari TM et al. Collagen nerve conduits and
- processed nerve allografts for the reconstruction of digital nerve gaps: a single-institution case series and review of the literature. World Neurosurg. 2019;127:e1176–e1184. https://doi.org/10.1016/j. wneu.2019.04.087
- Wneu.2013.04.087
 71. Rinker B, Zoldos J, Weber RV et al. Use of processed nerve allografts to repair nerve injuries greater than 25 mm in the hand. Ann Plast Surg. 2017;78(6S Suppl 5):S292–S295. https://doi.org/10.1097/SAP.0000000000001037
- 72. Dorman RM, Bass KD. Novel use of porcine urinary bladder matrix for pediatric pilonidal wound care: preliminary experience. Pediatr Surg Int. 2016;32(10):997–1002. https://doi.org/10.1007/s00383-016-3915-0
- 73. Cairo SB, Zhao J, Ha M et al. Porcine bladder extracellular matrix in paediatric pilonidal wound care: healing and patient experience evaluation. J Wound Care. 2019;28(Sup5):S12–S19. https://doi.org/10.12968/jowc.2019.28.Sup5.S12
- **74.** Chaffin AE, Dowling SG, Kosyk MS et al. Surgical reconstruction
- 74. Chaffin AE, Dowling SG, Kosyk MS et al. Surgical reconstruction of pilonidal sinus disease with concomitant extracellular matrix graft placement: a case series. J Wound Care. 2021;30(Sup7):S28–S34. https://doi.org/10.12968/jowc.2021.30.Sup7.S28
 75. Abdo RJ, Couch AL. Use of three-dimensional acellular collagen matrix in deep or tunnelling diabetic foot ulcers: a retrospective case series. J Wound Care. 2024;33(Sup9):S5–S16. https://doi.org/10.12968/jowc.2024.0176
 76. Snyder RJ, Ead J, Glick B et al. Dehydrated human amnion/chorion membrane as adjunctive therapy in the multidisciplinary treatment of pyoderma gangrenosum: a case report. Ostomy Wound Manage. 2015;61(9):40–49
 77. Alston D, Eggiman E, Forsyth RA et al. Pyoderma gangrenosum and dehydrated human amnion/chorion membrane: a potential
- and dehydrated human amnion/chorion membrane: a potential tool for án orphan disease. J Wound Care. 2022;31(10):808–814.
- https://doi.org/10.12968/jowc.2022.31.10.808 **78.** Fridman R, Bar-David T, Larsen J et al. Surgical management of lower extremity pyoderma gangrenosum with viable cryopreserved umbilical tissue: a case series. Wounds. 2020;32(4):101–106 **79.** Garcia N, Jiminez V, Graham L et al. Unique usages of
- dehydrated human amnion chorion membrane allografts in dermatology. J Drugs Dermatol. 2023;22(12):1228–1231. https://doi.org/10.36849/JDD.7115

 80. Maier MA, Dennis JR, Fontenot CJ et al. Local control of pyoderma gangrenosum using human amniotic membrane and transcriptome polygic. Am Surg. 2025;21(1):1444-147. https://doi.
- transcriptome analysis. Am Surg. 2025;91(1):144–147. https://doi. org/10.1177/00031348241269421
- 81. Hunger S, Postl L, Stehrer R et al. Use of amniotic membrane for radial forearm free flap donor site coverage: clinical, functional and cosmetic outcomes. Clin Oral Investig. 2020;24(7):2433–2443. https://doi.org/10.1007/s00784-019-03104-7
- 82. Desvigne MN, Bauer K, Holifield K et al. Case report: surgical closure of chronic soft tissue defects using extracellular matrix

graft augmented tissue flaps. Front Surg. 2021;7. https://doi.org/10.3389/fsurg.2020.559450

83. Cormican MT, Creel NJ, Bosque BA et al. Ovine forestomach matrix in the surgical management of complex volumetric soft tissue defects: a retrospective pilot case series. Eplasty. 2023:23:e66

84. Eudy M, Eudy CL, Roy S et al. Apligraf as an alternative to skin grafting in the pediatric population. Cureus. 2021;13(7). https://doi.org/10.7759/cureus.16226

olg/10.7739/ctireus.16226 **85.** Hughes OB, Rakosi A, Macquhae F et al. A review of cellular and acellular matrix products: indications, techniques, and outcomes. Plast Reconstr Surg. 2016;138(3S):138S-147S. https://doi.org/10.1097/PRS.0000000000002643

86. Das P, Manna S, Roy S et al. Polymeric biomaterials-based tissue engineering for wound healing: a systemic review. Burns Trauma. 2023;11. https://doi.org/10.1093/burnst/tkac058

87. Ria S, Chegini S, Ozbek L et al. Use of Integra® on avascular tissue. Br.J Oral Maxillofac Surg. 2024;62(4):367–372. https://doi. org/10.1016/j.bjoms.2023.11.022

88. De Francesco F, Zingaretti N, Parodi PC et al. The evolution of current concept of the reconstructive ladder in plastic surgery: the

current concept of the reconstructive ladder in plastic surgery; the emerging role of translational medicine. Cells. 2023;12(21):2567. https://doi.org/10.3390/cells12212567

89. Liden BA, Ramirez-GarciaLuna JL. Efficacy of a polylactic acid matrix for the closure of Wagner grade 1 and 2 diabetic foot ulcers: a single-center, prospective randomized trial. Wounds. 2023;35(8):E257–E260. https://doi.org/10.25270/wnds/23094

90. Banerjee J, Lasiter A, Nherera L. Systematic review of cellular, acellular, and matrix-like products and indirect treatment comparison between cellular/acellular and ampirits/gengamiotic

comparison between cellular/acellular and amniotic/nonamniotic grafts in the management of diabetic foot ulcers. Adv Wound Care. 2024;13(12):639–651. https://doi.org/10.1089/wound.2023.0075
91. Cazzell SM, Caporusso J, Vayser D et al. Dehydrated amnion

chorion membrane versus standard of care for diabetic foot ulcers: a randomised controlled trial. J Wound Care. 2024;33(Sup7):S4-S14.

https://doi.org/10.12968/jowc.2024.0139 **92.** Chew BMH, Gill HS, Tiwari P et al. Expedited infection control and wound healing by combining Matriderm®, a dermal matrix, and Stimulan® absorbable antibiotic beads: a case report. Ann Transl Med. 2024;12(5):95–95. https://doi.org/10.21037/atm-24-44

93. Lee YJ, Han HJ, Shim HS. Treatment of hard-to-heal wounds in ischaemic lower extremities with a novel fish skin-derived matrix. J Wound Care. 2024;33(5):348–356. https://doi.org/10.12968/jowc.2024.33.5.348

94. Tettelbach WH, Driver V, Oropallo A et al. Dehydrated human amnion/chorion membrane to treat venous leg ulcers: a cost-effectiveness analysis. J Wound Care. 2024;33(Sup3):S24–S38. https://doi.org/10.12968/jowc.2024.33.Sup3.S24
95. Simman R. Wound closure and the reconstructive ladder in

plastic surgery. J Am Coll Cert Wound Spec. 2009;1(1):6–11. https://doi.org/10.1016/j.jcws.2008.10.003 **96.** Sandberg LJM. The plastic surgery compass: navigating the

reconstructive ladder in the personalized health care era. Plast Reconstr Surg. 2016;4(9):e1035. https://doi.org/10.1097/ GOX.0000000000001035 **97.** Tettelbach W, Cazzell S, Reyzelman AM et al. A confirmatory

study on the efficacy of dehydrated human amnion/chorion membrane dHACM allograft in the management of diabetic foot ulcers: A prospective, multicentre, randomised, controlled study of

110 patients from 14 wound clinics. Int Wound J. 2019;16(1):19–29. https://doi.org/10.1111/iwj.12976

98. Atkin L, Bućko Z, Montero EC et al. Implementing TIMERS: the race against hard-to-heal wounds. J Wound Care. 2019;28(S3a):S1–S50. https://doi.org/10.12968/jowc.2019.28.Sup3a.S1

99. Mulder G, Lavery LA, Marston WA. Skin substitutes for the management of hard-to-heal wounds - Wounds International 2024. https://woundsinternational.com/consensus-documents/ skin-substitutes-for-the-management-of-hard-to-heal-wounds/ (accessed January 2025) **100.** Galiano RD, Orgill DP, Armstrong DG et al. A prospective

multicenter study of a weekly application regimen of viable human amnion membrane allograft in the management of nonhealing diabetic foot ulcers. Plast Reconstr Surg. 2023;11(10):e5291. https://doi.org/10.1097/GOX.0000000000005291

101. Mundra LS, Tucker NJ, Parry JA. Urinary bladder matrix grafting versus flap coverage for acute or infected wound defects in patients with orthopaedic trauma. J Orthop Trauma. 2022;36(10):e374–e379. https://doi.org/10.1097/BOT.0000000000002406

102. Armstrong DG, Tettelbach WH, Chang TJ et al. Observed impact of skin substitutes in lower extremity diabetic ulcers: lessons from the Medicare Database (2015–2018). J Wound Care. 2021;30(Sup7):S5-S16. https://doi.org/10.12968/jowc.2021.30.Sup7.

103. Hajmohammadi K, Esmaeili Zabihi R, Akbarzadeh K et al. Using a combination therapy to combat scalp necrosis: a case report. J Med Case Reports. 2020;14(1):132. https://doi.org/10.1186/

s13256-020-02450-5

104. James C, Patel M, Ellis S et al. The use of fetal bovine collagen on chronic wounds increases limb salvage: a single-center retrospective analysis. Wounds. 2022;34(3):71–74. https://doi. org/10.25270/wnds/2022.7174

105. Lehrman JD. Combining the benefits of collagen and negative

105. Lehrman JD. Combining the benefits of collagen and negative pressure wound therapy to heal a chronic diabetic foot ulcer: a case report. Wounds. 2020;32(3):E11–E13
106. McNamara SA, Hirt PA, Weigelt MA et al. Traditional and advanced therapeutic modalities for wounds in the paediatric population: an evidence-based review. J Wound Care. 2020;29(6):321–334. https://doi.org/10.12968/jowc.2020.29.6.321
107. Veale RWF, Kollmetz T, Taghavi N et al. Influence of advanced wound matrices on observed vacuum pressure during simulated pagative pressure wound therapy. J March Behav Biomed Mat.

negative pressure wound therapy. J Mech Behav Biomed Mat. 2023;138:105620. https://doi.org/10.1016/j.jmbbm.2022.105620 **108.** Kaplan EG, Kaplan GS, Kaplan DM et al. Superficial ulcer

treatment utilizing hyperbaric oxygen and porcine skin grafts. J Foot Surg. 1978;17(4):144–149

109. Kim PJ, Heilala M, Steinberg JS et al. Bioengineered alternative tissues and hyperbaric oxygen in lower extremity wound healing. Clin Pod Med Surg. 2007;24(3):529–546. https://doi.org/10.1016/j. cnm.2007.03.011

110. Nasiry D, Khalatbary AR, Abdollahifar M-A et al. SDF- 1α loaded bioengineered human amniotic membrane-derived scaffold transplantation in combination with hyperbaric oxygen improved diabetic wound healing. J Biosci Bioengin. 2022;133(5):489–501. https://doi.org/10.1016/j.jbiosc.2022.01.012

111. Henderson JA, Jones MW, Houle SS. Innovative use of dHACM.

in conjunction with hyperbaric oxygen therapy to treat a nonhealing nasal wound subsequent to squamous cell carcinoma resection

and radiation: a case study. Wounds. 2019;31(3):E18–E20

112. Choudhury R. Hypoxia and hyperbaric oxygen therapy: a review. Int J Gen Med. 2018;11:431–442. https://doi.org/10.2147/ IJGM.S172460

113. Harl MJ. Defining the role of hyperbaric oxygen therapy as an adjunct to reconstructive surgery. Surg Clin North Am. 2020;100(4):777–785. https://doi.org/10.1016/j.suc.2020.04.003

114. Klakeel M, Kowalske K. The role of hyperbaric oxygen therapy for the treatment of wounds. Phys Med Rehabil Clin N Am. 2022;33(4):823–832. https://doi.org/10.1016/j.pmr.2022.06.008 115. Leite CBG, Tavares LP, Leite MS et al. Revisiting the role of

hyperbaric oxygen therapy in knee injuries: Potential benefits and mechanisms. J Cell Physiol. 2023;238(3):498–512. https://doi.org/10.1002/jcp.30947

116. Zhou D, Fu D, Yan L et al. The role of hyperbaric oxygen

therapy in the treatment of surgical site infections: a narrative review. Medicina (Kaunas). 2023;59(4):762. https://doi.org/10.3390/ medicina59040762

117. Zhou K, Krug K, Stachura J et al. Silver-collagen dressing and high-voltage, pulsed-current therapy for the treatment of chronic full-thickness wounds: a case series. Ostomy Wound Manage. 2016;62(3):36-44

118. Rabbani M, Rahman E, Powner MB et al. Making sense of electrical stimulation: a meta-analysis for wound healing. Ann Biomed Eng. 2024;52(2):153–177. https://doi.org/10.1007/ s10439-023-03371-2

119. Luo R, Dai J, Zhang J et al. Accelerated skin wound healing by electrical stimulation. Adv Healthc Mater. 2021;10(16):e2100557. https://doi.org/10.1002/adhm.202100557

paradigm for surgical skills training and assessment of competency. JAMA Surg. 2021;156(12):1103. https://doi.org/10.1001/jamasurg.2021.4412

121. Andreatta P, Bowyer MW, Ritter EM et al. Evidence-based Surgical competency outcomes from the clinical readiness program. Ann Surg. 2023;277(5):e992–e999. https://doi.org/10.1097/ SLA.0000000000005324

122. Reed CR, Williams T, Taritsa I et al. Exploring the efficacy of selected allografts in chronic wound healing: evidence from murine models and clinical data for a proposed treatment algorithm. Adv

Wound Care. 2024. https://doi.org/10.1089/wound.2023.0139 **123.** Nherera LM, Banerjee J. Cost effectiveness analysis for commonly used human cell and tissue products in the management of diabetic foot ulcers. Health Sci Rep. 2024;7(3):e1991. https://doi.org/10.1002/hsr2.1991

124. Tettelbach WH, Armstrong DG, Chang TJ et al. Cost-effectiveness of dehydrated human amnion/chorion membrane allografts in lower extremity diabetic ulcer treatment. J Wound Care. 2022;31(Sup2):S10–S31. https://doi.org/10.12968/ jowc.2022.31.Sup2.S10

125. Guest JF, Atkin L, Aitkins C. Potential cost-effectiveness of using adjunctive dehydrated human amnion/chorion membrane allograft in the management of non-healing diabetic foot ulcers in the United Kingdom. Int Wound J. 2021;18(6):889–901. https://doi.org/10.1111/ iwj.13591

- 126. Buck DW. Innovative bioactive glass fiber technology 126. Buck DW. Innovative bioactive glass fiber technology accelerates wound healing and minimizes costs: a case series. Adv Skin Wound Care. 2020;33(8):1–6. https://doi.org/10.1097/01. ASW.0000672504.15532.21

 127. Schaum KD. CTPs applied in office practices. Adv Skin Wound Care. 2015;28(3):103–105. https://doi.org/10.1097/01. ASW.0000461296.42250.37

 128. Schaum KD. Fiction or fact: reimbursement for cellular and/or tissue-based products for skin wounds. Adv Skin Wound Care. 2019;32(2):55–57. https://doi.org/10.1097/01. ASW.0000550738.26041.c5

- 2019;32(2):55–57. https://doi.org/10.1097/01.
 ASW.0000550738.26041.c5

 129. Suzuki K, Michael G, Tamire Y. Viable intact cryopreserved human placental membrane for a non-surgical approach to closure in complex wounds. J Wound Care. 2016;25(Sup10):S25–S31. https://doi.org/10.12968/jowc.2016.25.Sup10.S25

 130. Johnson J, Johnson AR, Andersen CA et al. Skin pigmentation interacts the distributions of the state of the sta
- impacts the clinical diagnosis of wound infection: imaging of bacterial burden to overcome diagnostic limitations. | Racial and Ethnic Health Disparities. 2024;11(2):1045–1055. https://doi.org/10.1007/s40615-023-01584-8 **131.** Maita KC, Avila FR, Torres-Guzman RA et al. Local anti-
- inflammatory effect and immunomodulatory activity of chitosanbased dressing in skin wound healing: A systematic review. J Clin Transl Res. 2022;8(6):488–498 **132.** Jahanafrooz Z, Bakhshandeh B, Behnam Abdollahi S et al.
- **132.** Jahanafrooz Z, Bakhshandeh B, Behnam Abdollahi S et al. Human amniotic membrane as a multifunctional biomaterial: recent advances and applications. J Biomater Appl. 2023;37(8):1341–1354. https://doi.org/10.1177/08853282221137609 **133.** Arrizabalaga JH, Nollert MU. Human amniotic membrane: a versatile scaffold for tissue engineering. ACS Biomater Sci Eng. 2018;4(7):2226–2236. https://doi.org/10.1021/
- acsbiomaterials.8b00015
- 134. Maljaars LP, Bendaoud S, Kastelein AW et al. Application of amniotic membranes in reconstructive surgery of internal

- organs—A systematic review and metaDanalysis. | Tissue Eng Regen Med. 2022;16(12):1069-1090. https://doi.org/10.1002/term.335
- 135. Li Y, An S, Deng C et al. Human acellular amniotic membrane as skin substitute and biological scaffold: a review of its preparation, preclinical research, and clinical application. Pharmaceutics. 2023;15(9):2249. https://doi.org/10.3390/pharmaceutics15092249 136. Fukutake M, Ochiai D, Masuda H et al. Human amniotic fluid
- 136. Fukutake M, Ochiai D, Masuda H et al. Human amniotic fluid stem cells have a unique potential to accelerate cutaneous wound healing with reduced fibrotic scarring like a fetus. Human Cell. 2019;32(1):51–63. https://doi.org/10.1007/s13577-018-0222-1
 137. De Francesco F, Busato A, Mannucci S et al. Artificial dermal substitutes for tissue regeneration: comparison of the clinical outcomes and histological findings of two templates. J Int Med Res. 2020;48(8). https://doi.org/10.1177/0300060520945508
 138. Butenko S, Miwa H, Liu Y et al. Engineering immunomodulatory biomaterials to drive skip wounds toward regenerative healing. Cold
- biomaterials to drive skin wounds toward regenerative healing. Cold Spring Harb Perspect Biol. 2023;15(5):a041242. https://doi. org/10.1101/cshperspect.a041242
- 139. Hofmann N, Rennekampff H-O, Salz AK et al. Preparation of human amniotic membrane for transplantation in different
- human amniotic membrane for transplantation in different application areas. Front Transplant. 2023;2:1152068. https://doi. org/10.3389/frtra.2023.1152068 **140.** Shah R, Rodrigues R, Phillips V et al. The use of artificial dermal substitutes for repair of the donor site following harvesting of a radial forearm free flap: A systematic review. J Plast Reconstr Aesth Surg. 2024;88:501–516. https://doi.org/10.1016/j.bjps.2023.11.046 **141.** Hosseini SN, Mousavinasab SN, Fallahnezhat M. Xenoderm dressing in the treatment of second degree burns. Burns. 2007;33(6):776–781. https://doi.org/10.1016/j.burns.2006.10.396 **142.** Mostaque AK, Rahman KBMA. Comparisons of the effects of biological membrane (amnion) and silver sulfadiazine in the management of burn wounds in children. I Burn Care Res.
- management of burn wounds in children. | Burn Care Res. 2011;32(2):200-209. https://doi.org/10.1097/ BCR.0b013e31820aad94

